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Binary Hypothesis Testing With Byzantine Sensors:
Fundamental Tradeoff Between Security

and Efficiency
Xiaoqiang Ren , Jiaqi Yan , and Yilin Mo

Abstract—This paper studies binary hypothesis testing based
on measurements from a set of sensors, a subset of which can be
compromised by an attacker. The measurements from a compro-
mised sensor can be manipulated arbitrarily by the adversary. The
asymptotic exponential rate, with which the probability of error
goes to zero, is adopted to indicate the detection performance of
a detector. In practice, we expect the attack on sensors to be spo-
radic, and therefore the system may operate with all the sensors
being benign for an extended period of time. This motivates us
to consider the tradeoff between the detection performance of a
detector, i.e., the probability of error, when the attacker is absent
(defined as efficiency) and the worst case detection performance
when the attacker is present (defined as security). We first provide
the fundamental limits of this tradeoff, and then propose a detec-
tion strategy that achieves these limits. We then consider a special
case, where there is no tradeoff between security and efficiency. In
other words, our detection strategy can achieve the maximal effi-
ciency and the maximal security simultaneously. Two extensions of
the secure hypothesis testing problem are also studied and funda-
mental limits and achievability results are provided: first, a subset
of sensors, namely “secure” sensors, are assumed to be equipped
with better security countermeasures and hence are guaranteed
to be benign; and second, detection performance with unknown
number of compromised sensors. Numerical examples are given to
illustrate the main results.

Index Terms—Hypothesis testing, security, secure detection, ef-
ficiency, trade-off, Byzantine attacks, fundamental limits.

I. INTRODUCTION

BACKGROUND AND MOTIVATIONS: Network embed-
ded sensors, which are pervasively used to monitor the

system, are vulnerable to malicious attacks due to their limited
capacity and sparsely spatial deployment. An attacker may get
access to the sensors and send arbitrary messages, or break the
communication channels between the sensors and the system op-
erator to tamper with the transmitted data. Such integrity attacks
have motivated many researches on how to infer useful infor-
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mation from corrupted sensory data in a secure manner [1]–[3].
In this paper, we follow this direction but with the focus on the
trade-off between the performance of the inference algorithm
when the attacker is absent and the “worst-case” performance
when the attacker, which has the knowledge of the inference
algorithm, is present. We define two metrics, efficiency and se-
curity, to characterize the performance of the hypothesis testing
algorithm (or detector) under the two scenarios respectively and
analyze the trade-off between security and efficiency.

Our Work and its Contributions: We consider the sequential
binary hypothesis testing based on the measurements from m
sensors. It is assumed that n out of these m sensors may be
compromised by an attacker, the set of which is chosen by the
attacker and fixed over time. The adversary can manipulate
the measurements sent by the compromised sensors arbitrarily.
According to Kerckhoffs’s principle [4], i.e., the security of a
system should not rely on its obscurity, we assume that the ad-
versary knows exactly the hypothesis testing algorithm used by
the fusion center. On the other hand, the fusion center (i.e., the
system operator) only knows the number of malicious sensors
n, but does not know the exact set of the compromised sensors.

At each time k, the fusion center needs to make a decision
about the underlying hypothesis based on the possibly corrupted
measurements collected from all sensors until time k. Given a
hypothesis testing algorithm at the fusion center (i.e., a mea-
surements fusion rule), the worst-case probability of error is
investigated, and the asymptotic exponential decay rate of the
error, which we denote as the “security” of the system, is adopted
to indicate the detection performance. On the other hand, when
the attacker is absent, the detection performance of a hypothesis
testing algorithm, i.e., the asymptotic exponential decay rate of
the error probability, is denoted by the “efficiency”.

We focus on the trade-off between efficiency and security. In
particular, we are interested in characterizing the fundamental
limits of the trade-offs between efficiency and security and the
detectors that achieve these limits.

The main contributions of this work are summarized as fol-
lows:

1) To the best of our knowledge, this is the first work that
studies the trade-off between the efficiency and security
of any inference algorithm.

2) With mild assumptions on the probability distributions of
the measurements, we provide the fundamental limits of
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the trade-off between the efficiency and security (Corol-
laries 1 and 2). Furthermore, we present detectors, with
low computational complexity, that achieve these limits
(Theorem 4). Therefore, the system operator can easily
adopt the detectors we proposed to obtain the best trade-
off between efficiency and security. Interestingly, in some
cases, e.g., Gaussian random variables with same variance
and different mean, the maximal efficiency and the maxi-
mal security can be achieved simultaneously (Theorem 5).

3) Similar results, i.e., the fundamental limits of the trade-off
and the detectors that possess these limits, are established
with several different problem settings (Section V). This
shows that our analysis techniques are insightful and may
be helpful for the future related studies.

Related Literature: A sensor is referred to as a Byzantine
sensor if its messages to the fusion center are fully controlled
by an adversary.1 Recently, detection with Byzantine sensors
has been studied extensively in [5]–[14], among which [5]–
[7] took the perspective of an attacker and aimed to find the
most effective attack strategy, [8]–[11] focused on designs of
resilient detectors, and [12]–[14] formulated the problem in a
game-theoretic way. The main results of [5] are the critical frac-
tion of Byzantine sensors that blinds the fusion center, which
is just the counterpart of the breakdown point in robust statis-
tics [15], and the most effective attack strategy that minimizes
the asymptotic error exponent in the Neyman-Pearson setting,
i.e., the Kullback–Leibler (K–L) divergence. Since the Byzan-
tine sensors are assumed to generate independent and identical
distributed (i.i.d.) data, the resulting measurements with mini-
mum K–L divergence and the corresponding robust detector co-
incide with those in [16]. Similar results were obtained in [6], [7]
by considering non-asymptotic probability of error in Bayesian
setting and asymptotic Bayesian performance metric, i.e., Cher-
noff information, respectively. The authors in [8] focused on
computation efficient algorithms to determine optimal parame-
ters of the q-out-of-m procedure [17] in large scale networks for
different fractions of Byzantine sensors. More than two types of
sensors were assumed in [9], [10]. The authors thereof proposed
a maximum likelihood procedure, which is based on the iterative
expectation maximization (EM) algorithm [18], simultaneously
classifying the sensor nodes and performing the hypothesis test-
ing. The authors in [11] showed that the optimal detector is of
a threshold structure when the fraction of Byzantine sensors is
less than 0.5. A zero-sum game was formulated in each of [12]–
[14], among which a closed-form equilibrium point of attack
strategy and detector was obtained in [14], computation effi-
cient and nearly optimal equilibrium point (exact equilibrium
point only in certain cases) was obtained in [12], and numerical
simulations were used to study the equilibrium point in [13].

While in [5]–[10], [13] the Byzantine sensors are assumed
to generate malicious data independently, this work, as in [11],
[12], [14], assumes that the Byzantine sensors may collude with
each other. The collusion model is more reasonable since the

1In practice, to manipulate the data of a sensor, an adversary may attack the
sensor node itself or break the communication channel between the sensor and
the fusion center. In this paper, we do not distinguish these two approaches.

attacker is malicious and will arbitrarily change the messages
of the sensors it controlls. Notice also that compared to the
independence model, the collusion model complicates the anal-
ysis significantly. Unlike [6]–[10], [12], [13], where the sensors
only send binary messages, this work, as in [5], [11], [14], as-
sumes that the measurements of a benign sensor can take any
value. Since the binary message model simplifies the structure
of corrupted measurements, and, hence, implicitly limits the ca-
pability of an attacker, it is easier to be dealt with. This work
differs from [11], [14] as follows. The authors in [11] focused
on one time step scenario. The analysis is thus fundamentally
different and more challenging. On the contrary, in this work the
hypothesis testing is performed sequentially and an asymptotic
regime performance metric, i.e., the Chernoff information, is
concerned. A similar setting as in this work was considered in
our recent work [14]. However, [14] focused on the equilibrium
point. The performance (i.e., the security and efficiency) of the
obtained equilibrium detection rule is merely one point of the
admissible set that will be characterized in this paper.

Finally, we should remark that the aforementioned literature
mainly focuses on designing algorithms in adversarial environ-
ment. However, those algorithms may perform poorly in the
absence of the adversary comparing to the classic Neyman-
Pearson detector or Naive Bayes detector. A fundamental ques-
tion, which we seek to answer in this paper, is that how to design
a detection strategy which performs “optimally” regardless of
whether the attacker is present.

Organization: In Section II, we formulate the problem of bi-
nary hypothesis testing in adversarial environments, in which
the attack model, the performance indices and the notion of the
efficiency and security are defined. For the sake of complete-
ness, we give a brief introduction the large deviation theory in
Section III, which is a key supporting technique for the later
analysis. The main results are presented in Section IV. We first
provide the fundamental limits of the trade-off between the ef-
ficiency and security. We then propose detectors that achieve
these limits. At last, we show that the maximal efficiency and
the maximal security can be achieved simultaneously in some
cases. Two extensions are investigated in Section V. After pro-
viding numerical examples in Section VI, we conclude the paper
in Section VII.

Notations: R (R+ ) is the set of (nonnegative) real numbers.
Z+ is the set of positive integers. The cardinality of a finite set I
is denoted as |I|. For a set A ∈ Rn , int(A) denotes its interior.
For any sequence {x(k)}∞k=1 , we denote its average at time k
as x̄(k) �

∑k
t=1 x(t)/k. For a vector x ∈ Rn , the support of x,

denoted by supp(x), is the set of indices of nonzero elements:

supp(x) � {i ∈ {1, 2, . . . , n} : xi �= 0}.

II. PROBLEM FORMULATION

Consider the problem of detecting a binary state θ ∈ {0, 1}
using m sensors’ measurements. Define the measurement y(k)
at time k to be a row vector:

y(k) �
[
y1(k) y2(k) · · · ym (k)

] ∈ Rm , (1)
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where yi(k) is the scalar measurement from sensor i at time k.
For simplicity, we define Y(k) as a vector of all measurements
from time 1 to time k:

Y(k) �
[
y(1) y(2) · · · y(k)

] ∈ Rmk . (2)

Given θ, we assume that all measurements
{yi(k)}i=1,...,m , k=1,2,... are independent and identically
distributed (i.i.d.). The probability measure generated by yi(k)
is denoted as ν when θ = 0 and it is denoted as μ when θ = 1.
In other words, for any Borel-measurable set A ⊆ R, the
probability that yi(k) ∈ A equals ν(A) when θ = 0 and equals
μ(A) when θ = 1. We denote the probability space generated
by all measurements y(1), y(2), . . . as (Ωy , Fy , P o

θ ),2 where
for any l ≥ 1

P o
θ (yi1 (k1) ∈ A1 , . . . , yil (kl) ∈ Al)

=
{
ν(A1)ν(A2) . . . ν(Al) if θ = 0
μ(A1)μ(A2) . . . μ(Al) if θ = 1 ,

when (ij , kj ) �= (ij ′ , kj ′) for all j �= j′. The expectation taken
with respect to P o

θ is denoted by Eo
θ . We further assume that

ν and μ are absolutely continuous with respect to each other.
Hence, the log-likelihood ratio λ : R → R of yi(k) is well de-
fined as

λ(yi) � log
(

dμ
dν

(yi)
)

, (3)

where dμ/dν is the Radon-Nikodym derivative.
We define fk : Rmk → [0, 1], the detector at time k, as a map-

ping from the measurement space Y(k) to the interval [0, 1].
When fk (Y(k)) = 0, the system makes a decision θ̂ = 0, and
when fk (Y(k)) = 1, θ̂ = 1. When fk (Y(k)) = γ ∈ (0, 1), the
system then “flips a biased coin” to choose θ̂ = 1 with proba-
bility γ and θ̂ = 0 with probability 1 − γ. The system’s strategy
f � (f1 , f2 , · · · ) is defined as an infinite sequence of detectors
from time 1 to ∞.

A. Attack Model

Let the (manipulated) measurements received by the fusion
center at time k be

y′(k) = y(k) + ya(k), (4)

where ya(k) ∈ Rm is the bias vector injected by the attacker
at time k. In the following, Assumptions 1–3 are made on the
attacker, among which Assumption 1 is in essence the only
limitation we pose.

Assumption 1 (Spare Attack): There exists an index set
I ⊂ M � {1, 2, . . . ,m} with |I| = n such that

⋃∞
k=1 supp

(ya(k)) = I. Furthermore, the system knows the number n,
but it does not know the set I.

We should remark that the above assumption does not pose
any restrictions on the value of yai (k) if sensor i is compromised
at time k, i.e., the bias injected into the data of a compromised
sensor can be arbitrary.

2The superscript “o” stands for original, which is contrasted with corrupted
measurements.

Assumption 1 says that the attacker can compromise up to
n out of m sensors at each time. It is practical to assume that
the attacker possesses limited resources, i.e., the number of
compromised sensors is (non-trivially) upper bounded, since
otherwise it would be too pessimistic and the problem becomes
trivial. The quantity n might be determined by the a priori
knowledge about the quality of each sensor. Alternatively, the
quantitynmay be viewed as a design parameter, which indicates
the resilience level that the system is willing to introduce; the
details of which are in Remark 1. Notice also that since the
worst-case attacks (over the set of compromised sensors and
the attack strategy) are concerned (the performance metric will
be introduced shortly), it is equivalent to replace the cardinality
requirement |I| = n by |I| ≤ n. We should note that in [6], [8],
[12], it was also assumed that the number/fraction of malicious
sensor nodes is known to the system operator.

Moreover, the set of compromised sensors is assumed to be
fixed over time. Notice that if we assume that the set of compro-
mised sensors has a fixed cardinality but is time-varying, i.e.,
there exists no a set like I to bound the compromised sensors,
the attacker would be required to abandon the sensor nodes it
has compromised, which is not sensible. Notice that in [8]–
[10], it was assumed the set of malicious/misbehaving sensors
is fixed as well. We should also note that though this work is
concerned with asymptotic performances (i.e., the security and
efficiency introduced later), the numerical simulations in Sec-
tion VI show that our algorithm indeed perform quite well in an
non-asymptotic setup. Actually, if a finite-time horizon problem
is considered and the time required for an attacker to control a
benign sensor is large enough, then it is reasonable to assume
that the set of compromised sensors is fixed.

In fact, the exactly same sparse attack model as in Assump-
tion 1 has been widely adopted by literature dealing with Byzan-
tine sensors, e.g., state estimation [19], [20], and quickest change
detection [21].

Finally, we should note that we do not assume any pattern of
the bias yai (k) for i ∈ I, i.e., the malicious bias injected may be
correlated across the compromised sensors and correlated over
time. Compared to the independence assumption in [5]–[10],
[13], our assumption improves the effectiveness of the attacker
and is more realistic in the sense that the attacker is malicious
and will do whatever it wants.

Remark 1: The parameter n can also be interpreted as how
many bad sensors the system can and is willing to tolerate,
which is a design parameter for the system operator. In general,
increasing n will increase the resilience of the detector under
attack. However, as is shown in the rest of the paper, a larger
n may result in more conservative design and is likely to cause
a performance degradation during normal operation when no
sensor is compromised.

Assumption 2 (Model Knowledge): The attacker knows the
probability measure μ and ν and the true state θ.

By the knowledge about the sensor, the attacker can develop
the probability measure μ and ν. To obtain the true state, the
attacker may deploy its own sensor network. Though it might be
difficult to satisfy in practice, this assumption is in fact conven-
tional in literature concerning the worst-case attacks, e.g., [5],
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[21]. Nevertheless, this assumption is in accordance with the
Kerckhoffs’s principle.

Assumption 3 (Measurement Knowledge): At time k, the at-
tacker knows the current and all the historical measurements
available at the compromised sensors.

Since the attacker knows the true measurement of a compro-
mised sensor i, yi(k), it may set the fake measurement arrived at
the fusion center y′i(k) to any value it wants by injecting yai (k).
One may also verify that all the results in this paper remain
even if the attacker is “strong” enough where at time k, it knows
measurements from all the sensors Y(k).

An admissible attack strategy is any causal mapping from
the attacker’s available information to a bias vector that sat-
isfies Assumption 1. This is formalized as follows. Let I =
{i1 , i2 , . . . , in}. Define the true measurements of the compro-
mised sensors from time 1 to k as

YI(k) �
[
yI(1) yI(2) · · · yI(k)

] ∈ R|I|k

with

yI(k) �
[
yi1 (k) yi2 (k) · · · yin (k)

] ∈ R|I|.

Similar toY(k),Y′(k) (Ya(k)) is defined as all the manipulated
(bias vector) from time 1 to k. The bias ya(k) is chosen as a
function of the attacker’s available information at time k:

ya(k) � g(YI(k),Ya(k − 1), I, θ, k), (5)

where g is a function3 of YI(k),Ya(k − 1), I, θ, k such that
ya(k) satisfies Assumption 1. We denote g as an admissible at-
tacker’s strategy. Notice that since time k is an input variable and
the available measurements YI(k),Ya(k − 1) are “increasing”
with respect to time k, the definition in (5) does not exclude the
time-varying attack strategy. Denote the probability space gen-
erated by all manipulated measurements y′(1), y′(2), . . . as
(Ω, F , Pθ ). The expectation taken with respect to the proba-
bility measure Pθ is denoted by Eθ .

B. Asymptotic Detection Performance

Given the strategy of the system and the attacker, the proba-
bility of error at time k can be defined as

e(θ, I, k) �
{

E0fk (Y′(k)) when θ = 0,
1 − E1fk (Y′(k)) when θ = 1.

(6)

Notice that fk could take any value from [0,1]. Hence, the
expected value of fk is used to compute the probability of error.
In this paper, we are concerned with the worst-case scenario. As
a result, let us define

ε(k) � max
θ=0,1,|I|=n

e(θ, I, k). (7)

In other words, ε(k) indicates the worst-case probability of error
considering all possible sets of compromised sensors and the
state θ given the detection rule f and attack strategy g. Notice

3The function g is possibly random. For example, given the available informa-
tion, the adversary can flip a coin to decide whether to change the measurement
or not.

also that in accordance with Assumption 1, the set I in the above
equation is fixed over time.

Ideally, for each time k, the system wants to design a detec-
tor fk to minimize ε(k). However, such a task can hardly be
accomplished analytically since the computation of the proba-
bility of error usually involves numerical integration. Thus, in
this article, we consider the asymptotic detection performance
in hope to provide more insight on the detector design. Define
the rate function as

ρ � lim inf
k→∞

− log ε(k)
k

. (8)

Clearly, ρ is a function of both the system strategy f and
the attacker’s strategy g. As such, we will write ρ as ρ(f, g) to
indicate such relations. Since ρ indicates the rate with which
the probability of error goes to zero, the system would like
to maximize ρ in order to minimize the detection error. On
the contrary, the attacker wants to decrease ρ to increase the
detection error.

C. Interested Problems

In practice, the attacker may not be present consistently. As
a result, the system will operate for an extended period of time
with all sensors being benign. Thus, a natural question arises: is
there any detection rule that has “decent” performance regard-
less of the presence of the attacker? Or is there a fundamental
trade-off between security and efficiency? In other words, a de-
tector that is “good” in the presence of an adversary will be “bad”
in a benign environment. This paper is devoted to answering this
question.

Informally, the performance of a detection rule when there
is no attacker at all is referred to by “efficiency”, while the
performance when the worst-case attacker (provided that the
attacker knows the detection rule used by the system) is present
is referred to by “security”. Mathematically speaking, given a
system strategy f , denote by E(f) and S(f) its efficiency and
security respectively, which are formalized as follows:

E(f) � ρ(f, g = 0), (9)

S(f) � inf
g
ρ(f, g) (10)

where 0 ∈ Rm is the zero vector.

III. PRELIMINARY: LARGE DEVIATION THEORY

In this section, we introduce the large deviation theory, which
is a key supporting technique of this paper.

To proceed, we first introduce some definitions. LetMω (w) �∫
Rd e

w ·X dω(X), w ∈ Rd be the moment generating function
for the random vector X ∈ Rd that has the probability mea-
sure ω, where w ·X is the dot product. Let domω � {w ∈
Rd |Mω (w) <∞} be the support such thatMω (w) is finite. De-
fine the Fenchel–Legendre transform of the function logMω (w)
as

Iω (x) = sup
w∈Rd

{x · w − logMω (w)}, x ∈ Rd . (11)
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Theorem 1 (Multidimensional Cramér’s Theorem [22]): Su
ppose X(1), . . . , X(k), . . . be a sequence of i.i.d. random
vectors and X(k) ∈ Rd has the probability measure ω. Let
X(k) �

∑k
t=1 X(t)/k, k ∈ Z+ be the empirical mean. Then

if 0 ∈ int(domω ), the probability P (X(k) ∈ A) with A ⊆ Rd

satisfies the large deviation principle, i.e.,
1) if A is closed,

lim sup
k→∞

1
k

log P (X(k) ∈ A) ≤ − inf
x∈A

Iω (x).

2) if A is open,

lim inf
k→∞

1
k

log P (X(k) ∈ A) ≥ − inf
x∈A

Iω (x).

IV. MAIN RESULTS

A. Technical Preliminaries

Denote the moment generating function of the log-likelihood
ratio λ under each hypothesis as:

M0(w) �
∫ ∞

y=−∞
exp(wλ(y))dν(y), (12)

M1(w) �
∫ ∞

y=−∞
exp(wλ(y))dμ(y). (13)

Furthermore, define dom0 as the region where M0(w) is finite
and I0(x) as the Fenchel–Legendre transform of logM0(w).
The quantities M1(w), dom1 and I1(x) are defined similarly.

Denote the the Kullback-Leibler (K–L) divergences by

D(1‖0) �
∫ ∞

y=−∞
λ(y)dμ, D(0‖1) � −

∫ ∞

y=−∞
λ(y)dν.

To apply the multidimensional Cramér’s Theorem and avoid
degenerate problems, we adopt the following assumptions:

Assumption 4: 0 ∈ int(dom0) and 0 ∈ int(dom1).
Assumption 5: The K–L divergences are well-defined, i.e.,

0 < D(1‖0),D(0‖1) <∞.
With the above assumptions, we have the following prop-

erties of I0(x) and I1(x). the proof of which is provided in
Appendix A.

Theorem 2: Under Assumptions 4 and 5, the followings
hold:

1) I0(x) (I1(x)) is twice differentiable, strictly con-
vex and strictly increasing (strictly decreasing) on
[−D(0‖1),D(1‖0)].

2) The following equalities hold:

I1(D(1‖0)) = 0, (14)

I0(D(1‖0)) = D(1‖0), (15)

I0(−D(0‖1)) = 0, (16)

I1(−D(0‖1)) = D(0‖1). (17)

I0(0) = I1(0). (18)

Since I0(0) = I1(0), let us define

C � I0(0). (19)

Fig. 1. Illustration of I0 (x) and I1 (x). The figure is plotted by assuming
y1 (1) to be Bernoulli distributed under both hypotheses with P o

0 (y1 (1) =
1) = 0.02 and P o

1 (y1 (1) = 1) = 0.6.

To make the presentation clear, we illustrate I0(x) and I1(x) in
Fig. 1.

The “inverse functions” of I0(x) and I1(x) are defined as
follows: for z ≥ 0,

I−1
0 (z) = max{x ∈ R : I0(x) = z},
I−1
1 (z) = min{x ∈ R : I1(x) = z}.

Let Dmin � min{D(0‖1),D(1‖0)}. We further define h(z) :
(0, (m− n)Dmin) �→ (0, (m− n)Dmin) as

h(z)

� (m− n)min{I0(I−1
1 (z/(m− n)), I1(I−1

0 (z/(m− n))}.
(20)

B. Fundamental Limits

We are ready to provide the fundamental limitations between
efficiency and security. The proof is provided in Appendix B.

Theorem 3: For any detection rule f , the following state-
ments on E(f) and S(f) are true:

1) E(f) ≤ mC,
2) S(f) ≤ (m− 2n)+C, where (m− 2n)+ = max{0,m−

2n}.
3) S(f) ≤ E(f),
4) Let E(f) = z, we have

S(f) ≤
{
h(z) if 0 < z < (m− n)Dmin (21a)
0 if z ≥ (m− n)Dmin . (21b)

Remark 2: Theorem 3 indicates that mC is the maximum
efficiency that can be achieved by any detector, while (m−
2n)+C is the maximum security that can be achieved. Therefore,
ifm ≤ 2n, i.e., no less that half of the sensors are compromised,
then S(f) = 0 for any f , which implies that all detectors will
have zero security. In that case, the naive Bayes detector will
be the optimal choice since it has the optimal efficiency and the
analysis becomes trivial. Therefore, without any further notice,
we assume m > 2n for the rest of the paper.
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Notice that fourth constraint in Theorem 3 indicates a
trade-off between security and efficiency. For general cases,
the maximum security and efficiency may not be achieved
simultaneously. However, in Section IV-D, we will prove that
for a special case, there exist detectors that can achieve the
maximum security and efficiency at the same time.

Notice that I0(x) (I1(x)) is strictly increasing (decreasing) on
[−D(0‖1),D(1‖0)]. Therefore, combining (15) and (17), one
obtains that h(z) is strictly decreasing. Then the dual version
of (21a) is obtained as follows. Let S(f) = z we have that if
0 < z ≤ (m− 2n)C,

E(f) ≤ h−1(z) = h(z), (22)

where h−1(z) is the inverse function of h(z), and the equality
holds because h(z) is an involutory function, i.e., h(h(z)) = z
for every z ∈ (0, (m− n)Dmin).

We then have the following two corollaries. The results follow
straightforwardly from Theorem 3 and (22), we thus omit the
proofs.

Corollary 1: Suppose the security of a detector f satisfies

S(f) = z ∈ [0, (m− 2n)C],

then the maximum efficiency of f satisfies the following in-
equality:

max
f∈{f :S(f )=z}

E(f) ≤
{
mC if z = 0
he(z) if z > 0 ,

where he(z) � min{mC,h(z)}.
Corollary 2: Suppose the efficiency of a detector f satisfies

E(f) = z ∈ [0,mC],

then the maximum security of f satisfies the following inequal-
ity:

max
f∈{f :E(f )=z}

S(f) ≤
{
hs(z) if 0 < z < z′,
0 if z ≥ z′ or z = 0,

where hs(z) = min{z, (m− 2n)C, h(z)}, and z′ = (m− n)
Dmin .

C. Achievability

In this section, we propose a detector that achieves the upper
bounds in Corollaries 1 and 2.

Let zs ≤ (m− 2n)C. At time k ≥ 1, the algorithm, denoted
by f ∗zs , is implemented as follows.

Remark 3: We here discuss about the computational com-
plexity of the detection rule f ∗zs . The computational complexity
for the step 1 is O(m). Notice that the quantity λ̄i(k) is com-
puted in a recursive fashion. The complexity for the step 2 is
O(m logm). To compute δ(0, k) and δ(1, k), we can first sort
I0(λ̄i(k)) and I1(λ̄i(k)) in ascending order, respectively, and
then sum the first m− 2n elements of each. The computational
complexity for the step 3 and step 4 is fixed, and the step 5 has
computational complexityO(m). Therefore, the total computa-
tional complexity for each time step is O(m logm).

We now show the performance of f ∗zs and the proof is provided
in Appendix C.

Algorithm 1: Hypothesis Testing Algorithm f ∗zs .

1: Compute the empirical mean of the likelihood ratio from
time 1 to time k for each sensor i:

λ̄i(k) �
k∑

t=1

λ(y′i(t))/k

=
k − 1
k

λ̄i(k − 1) +
1
k
λ(y′i(k)) (23)

with λ̄i(0) = 0.
2: Compute I0(λ̄i(k)) and I1(λ̄i(k)) for each i. Compute
the following sum:

δ(0, k) � min
|O|=m−n,O⊂M

∑

i∈O
I0(λ̄i(k)),

δ(1, k) � min
|O|=m−n,O⊂M

∑

i∈O
I1(λ̄i(k)).

3: If δ(0, k) < zs , make a decision θ̂ = 0; go to the next
step otherwise.
4: If δ(1, k) < zs , make a decision θ̂ = 1; go to the next
step otherwise.
5: If

∑m
i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a

decision θ̂ = 1 otherwise.

Definition 1: (ze , zs) are called an admissible pair if the fol-
lowing inequalities holds:

0 ≤ zs ≤ (m− 2n)C,

ze ≤
{
mC if zs = 0
he(zs) if zs > 0 ,

where he(zs) is defined in Corollary 1.
Theorem 4: Let (ze , zs) be any admissible pair of efficiency

and security. Then there holds

E(f ∗zs ) ≥ ze , S(f ∗zs ) ≥ zs.

The above theorem means that the upper bounds in Corol-
laries 1 and 2 are achieved by f ∗zs . Hence, we provide a tight
characterization on admissible efficiency and security pair. We
illustrate the shape of admissible region in Fig. 2.

Remark 4: The optimal detector may not be necessarily
unique, in the sense that there may exist other detectors, other
than the one defined by Algorithm 1, that can achieve the
same efficiency and security limits. By definition, the detec-
tors achieving the limits have the same asymptotic performance.
However, the finite-time performance (in terms of detection er-
ror) may be different and we are planning to investigate this in
the future work.

D. Special Case: Symmetric Distribution

In this subsection, we discuss a case where the maximum
security and efficiency can be achieved simultaneously by a
detector.
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Fig. 2. Achievable efficiency and security region for any detector. The figure
is plotted by assuming y1 (1) to be Bernoulli distributed under both hypotheses
with P o

0 (y1 (1) = 1) = 0.02 and P o
1 (y1 (1) = 1) = 0.6. The shaded area is

the admissible pair (E(f ), S(f )) for any detector f . The red dashed line is the
function (m − n)I0 (I−1

1 (z/(m − n))), while the blue dotted line the function
(m − n)I1 (I−1

0 (z/(m − n))).

Notice that by the definition of admissible pair, if we have

h((m− 2n)C) ≥ mC, (24)

then we know that (ze = mC, zs = (m− 2n)C) is an ad-
missible pair and hence the detector f ∗(m−2n)C defined in
Section IV-C can achieve maximum security (m− 2n)C and
efficiency mC simultaneously. In other words, adding security
will not deteriorate the performance of the system in the absence
of the adversary.

The following theorem provides a sufficient condition for
(24), which is based on the first order derivative of I0(·) and
I1(·). The proof is presented in Appendix D for the sake of
legibility.

Theorem 5: If I(1)
0 (x)|x=0 = −I(1)

1 (x)|x=0 , then h((m−
2n)C) ≥ mC holds. Therefore, f ∗(m−2n)C possesses not only
the maximal security but also the maximal efficiency.

Notice that whether or not the above sufficient condition is
satisfied merely depends on the probability distribution of the
original observations, which is independent of the number of
the compromised sensors.

If there exists “symmetry” between distribution μ and ν, then
the sufficient condition can be satisfied. To be specific, if there
exists a constant a such that for any Borel measurable set A, we
have

μ(a+ A) = ν(a−A),

then one can prove that

M0(w) = M0(−w),

which further implies that

I0(x) = I1(−x) ⇒ I
(1)
0 (x)|x=0 = −I(1)

1 (x)|x=0 .

We provide two examples of pairs of “symmetric” distribu-
tions as follows:

1) Each yi(k) is i.i.d. Bernoulli distributed and

yi(k) =
{
θ with probability p0
1 − θ with probability 1 − p0

2) Each yi(k) satisfies the following equation:

yi(k) = aθ + vi(k),

where a �= 0 and vi(k) ∼ N (v̄, σ2) is i.i.d. Gaussian dis-
tributed.

V. EXTENSION

In this section, we consider two extensions to the problem
settings discussed in Section IV.

A. Secure Sensors

Consider that there is a subset of “secure” sensors that are
well protected and cannot be compromised by the attacker. We
would like to study the trade-off between security and efficiency
when those “secure” sensors are deployed.

Letms out of the totalm sensors be “secure” and the remain-
ingm−ms sensors are “normal” ones that can be compromised
by an adversary. In this subsection, n can take any value in
{0, 1, . . . ,m−ms} and does not necessarily satisfy 2n < m.
The other settings are the same as in Section II. Denote by Es(f)
and Ss(f) the efficiency and security of a detection rule f under
such case.

Then one obtains the following results as in Theorem 3.
Theorem 6: For any detection rule f , the following state-

ments on Es(f) and Ss(f) are true:
1) Es(f) ≤ mC,
2) Ss(f) ≤ max((m− 2n)C,msC),
3) Ss(f) ≤ Es(f),
4) Let Es(f) = z, we have

Ss(f) ≤
{
h(z) if 0 < z < (m− n)Dmin
0 if z ≥ (m− n)Dmin

.

The above theorem is proved in the same manner as in Ap-
pendix B. Notice that the essential difference is the range of
Ss(f), i.e., the statement in the second bullet. This is due to the
fact that the ms secure sensors cannot be compromised.

Remark 5: From the above theorem, one sees that replac-
ing ms normal sensors with secure sensors does not change
the fundamental trade-off between the security and efficiency.
However, the benefit of these ms secure sensors are that the se-
curity itself is improved when 2n > m−ms . Also, one notice
that whenm−ms ≥ 2n, there are no gains of deploying secure
sensors. Intuitively, in such case the redundancy of them−ms

normal sensors is enough.
Furthermore, the detector fszs in Algorithm 2, which is a slight

variation of f ∗zs and treats the ms secure sensors separately,
achieves the limits. This is stated in the following theorem,
which is proved in the same manner as in Appendix C.
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Algorithm 2: Hypothesis Testing Algorithm fszs when there
are Secure Sensors.
1: Compute λ̄i(k) for each sensor.
2: Compute I0(λ̄i(k)) and I1(λ̄i(k)) for each sensor.
Compute the minimum sum from the “normal” sensors:

δ(0, k) = min
|O|=m−ms−n,O⊂{1,...,m−ms }

∑

i∈O
I0(λ̄i(k)),

δ(1, k) = min
|O|=m−ms−n,O⊂{1,...,m−ms }

∑

i∈O
I1(λ̄i(k)).

3: If δ(0, k) +
∑i=m

m−ms +1 I0(λ̄i(k)) < zs , make a decision

θ̂ = 0; go to the next step otherwise.
4: If δ(1, k) +

∑i=m
m−ms +1 I1(λ̄i(k)) < zs , make a decision

θ̂ = 1; go to the next step otherwise.
5: If

∑m
i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a

decision θ̂ = 1 otherwise.

Theorem 7: If the pair (ze , zs) satisfies

0 ≤ zs ≤ max((m− 2n)C,msC),

ze ≤
{
mC if zs = 0
he(zs) if zs > 0 ,

then there holds

Es(fszs ) ≥ ze , Ss(fszs ) ≥ zs.

B. Unknown Number of Compromised Sensors

In the previous section, we assume that if the system is being
attacked, then n sensors are compromised. However, in practice,
the exact number of compromised sensors is likely to be un-
known. In this subsection, we assume that we know an estimated
upper bound on the compromised sensors, denoted by n. Let na
denote the number of the sensors that are actually compromised.
Therefore, na may take value in Na � {0, 1, 2, . . . n}.4

Given a detector f , denote by Dna (f) the detection perfor-
mance when the number of compromised sensor is na . Then,
one has D0(f) = E(f) and Dn (f) = S(f). In the following, we
present the pairwise trade-off between Dna (f) and Dn ′

a
(f) for

any 0 ≤ na, n
′
a ≤ n, and propose an algorithm to achieve these

performance limits. A similar argument as in Section IV can be
adopted to obtain these results, the details of which are omitted.

We define h̃ : Na ×Na × (0,∞) �→ (0,∞) as

h̃(na, n′a , z)

� (m− ña)min
{
h̃0(z/(m− ña)), h̃1(z/(m− ña))

}
,

4In Section II-A, we remark that the requirement |I| = n can be equivalently
replaced by |I| ≤ n. The implicit assumption is that the estimated upper bound
n is tight and the worst-case number of compromised sensors is in indeed n.
Therefore, na in this section may also be interpreted as the tight upper bound
of the number of actually compromised senors.

Algorithm 3: Hypothesis Testing Algorithm f ∗z .

initialization: na = n.
1: Compute λ̄i(k), I0(λ̄i(k)), I1(λ̄i(k)) for each sensor i.
2: While na ≥ 1

1) Compute these two minima:

δ̃(0, k, na) � min
|O|=m−na ,O⊂M

∑

i∈O
I0(λ̄i(k)),

δ̃(1, k, na) � min
|O|=m−na ,O⊂M

∑

i∈O
I1(λ̄i(k)).

2) If δ̃(0, k, na) < zna , make a decision θ̂ = 0 and stop.
3) If δ̃(1, k, na) < zna , make a decision θ̂ = 1 and stop.
4) Replace na with na − 1.

3: If
∑m

i=1 λ̄i(k) < 0, make a decision θ̂ = 0; make a
decision θ̂ = 1 otherwise.

where ña = na + n′a , and

h̃0(z) =
{
I0(I−1

1 (z)) if 0 < z < D(0||1)
0 if z ≥ D(0||1) ,

h̃1(z) =
{
I1(I−1

0 (z)) if 0 < z < D(1||0)
0 if z ≥ D(1||0) .

Then one obtains that for any detector f and na, n′a ∈ N, there
hold

Dna (f) ≤ (m− 2na)C, (25)

Dna (f) ≤ h̃
(
na, n

′
a ,Dn ′

a
(f)

)
. (26)

Let z � (z0 , z1 , . . . , zn ) be a n-tuplet of admissible detection
performance, i.e.,

zna ≤ (m− 2na)C,

zna ≤ h̃(na , n′a , zn ′
a
).

Then the detector in Algorithm 3, which is a variation of f ∗zs
in Section IV-C and is denoted by f ∗z , can achieve these perfor-
mance, i.e., Dna (f

∗
z ) ≥ zna for any na ∈ N.

VI. NUMERICAL EXAMPLES

A. Asymptotic Performance

We simulate the performance of the detector f ∗zs proposed in
Section IV-C (i.e., its efficiency and security) and compare the
empirical results to the theoretical ones shown in Fig. 2.

The same parameters as in Fig. 2 are used, i.e., P o
0 (y1(1) =

1) = 0.02, P o
1 (y1(1) = 1) = 0.6, m = 9 and n = 2. To simu-

late the security, it is assumed that the following attack strategy
is adopted. If θ = 0, the attacker modifies the observations of
the compromised sensors such that for every i ∈ I and k ≥ 1

I0(λ̄i(k)) ≥ zs.

On the other hand, if θ = 1, the attack strategy is such that
I1(λ̄i(k)) ≥ zs holds for every i ∈ I and k ≥ 1.

To simulate the performance with high accuracy, we adopt
the importance sampling approach [23]. To plot Fig. 3, we let zs
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Fig. 3. Comparison between the empirical and theoretical performance of the
detector f ∗z s when zs ∈ [0, (m − 2n)C ].

Fig. 4. Finite-time performance of f ∗z s in the absence of the adversary.

be in [0, (m− 2n)C = 1.5987]. Notice that the theoretical per-
formance of f ∗zs coincides exactly with the fundamental limits
in Fig. 2. Therefore, Fig. 3 verifies that our algorithm f ∗zs indeed
achieves the fundamental limits.

B. Non-Asymptotic Performance

We have proved that our algorithm is optimal in the sense
that it achieves the fundamental trade-off between the security
and efficiency. However, notice that both the security and ef-
ficiency are asymptotic performance metrics. In this example,
we show that our algorithm possesses quite “nice” finite-time
performance as well by comparing it to the naive Bayes detec-
tor. We should remark that while the Bayes detector is strictly
optimal (i.e., optimal for any time horizon) in the absence of
attackers, its security is zero. The results are in Fig. 4, where
zs is chosen to be 1.4282. Fig. 4 illustrates that the algorithm
f ∗zs with zs = 1.4282 has a finite-time detection performance
comparable to that of naive Bayes detector when the attacker
is absent. The finite-time performance metric ε(k) is defined
in (7), where the attacker is absent, i.e., g = 0, and the detector
is f ∗zs =1.4282 or the naive Bayes. One should note that the secu-
rity of f ∗zs is 1.4282. As a result, adopting the secure detector f ∗zs

TABLE I
THE ASYMPTOTIC PERFORMANCES OF OUR ALGORITHM f ∗z s WITH

zs = 1.4282, THE TRIMMED MEAN DETECTOR IN [14] ftrim , AND THE

OPTIMAL Q-OUT-M PROCEDURE fqom (q∗)

Fig. 5. Finite-time performance of f ∗z s , ftrim , and fqom (q∗) in the absence
of the adversary.

increases the security of the system while introducing minimum
performance loss in the absence of the adversary.

C. Comparison With Other Detectors

To simulate the detectors introduced later, we use the same
sensor network model as in Fig. 3. The asymptotic perfor-
mances, i.e., the efficiency and security, are summarized in Ta-
ble I, while the non-asymptotic performances when the attacker
is absent are in Fig. 5. Table I is consistent with the statement
that our algorithm achieves the best trade-off between the se-
curity and efficiency, while Fig. 5 shows that it is preferable
to adopt our algorithm as well with respect to the finite-time
performance when the attacker is absent. In the following, we
present the two detectors to be compared to in detail.

The first detector is the equilibrium detection rule that is
proposed in [14] for cases where m > 2n. This detection rule,
which shares the same spirit with the α-trimmed mean in robust
statistics [15], first removes the largest n and smallest n log-
likelihood ratios, and then compares the mean of the remaining
m− 2n log-likelihood ratios to 0, just as in the classic probabil-
ity ratio test. The details of the detection rule, denoted by ftrim ,
are formalized as follows.

ftrim (Y′(k)) =

{
0 if

∑m−n
i=n+1 λ̄[i](k) < 0,

1 if
∑m−n

i=n+1 λ̄[i](k) ≥ 0,

where λ̄[i](k) is the i-th smallest element of {λ̄1(k), λ̄2(k),
. . . , λ̄m (k)} with λ̄i(k) being the empirical mean of log-
likelihood ratio from time 1 to k for senor i, which is defined
in (23).
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It was shown in [14] that the security and efficiency of ftrim
are

S(ftrim ) = (m− 2n)C, E(ftrim ) = (m− n)C.

Since for any z < C, there hold

I0(I−1
1 (z)) > C, I1(I−1

0 (z)) > C.

Then by the definition of h(z) and Theorem 4, one obtains that
if the security of our algorithm is (m− 2n)C, its efficiency is
larger than (m− n)C, i.e.,

E(f ∗zs =(m−2n)C ) > (m− n)C.

Therefore, our algorithm is preferable since, with the same se-
curity, it achieves the larger efficiency than the algorithm ftrim .
In particular, by Theorem 5, the efficiency gain of our algorithm
in certain cases is nC.

The next detector is the q-out-of-m procedure [17], which
has been studied in [8] by assuming that the malicious sensor
nodes generate fictitious data randomly and independently, and
the probability that the compromised sensor flips the binary
message is known. The q-out-of-m procedure is simple and
works as follows. At time k, after receiving the mk (binary)
messages, the fusion center makes a decision

θ̂ =

{
1 if

∑k
t=1

∑m
i=1y

′
i(k) ≥ qk ,

0 otherwise.
(27)

Let q = [q1 , . . . , qk , . . .] be a sequence of thresholds used in the
above detector from time 1 to infinity. In the sequel, we denote
the above detector as fqom(q). Notice that fqom(q) is just the
naive Bayesian detector, which minimizes the weighted sum
of miss detection and false alarm at each time k (the weight is
determined by qk ). It is clear that if fqom(q) is used at the fusion
center, the worst-case attack is always sending 0 (1) if the true
state θ is 1 (0). Therefore, at time k, the performance (i.e., the
probability of detection error) of the detector fqom(q) under the
worst-case attacks is as follows.

P1(fqom(q) = 0) =
qk∑

j=0

(
mk − nk

j

)

pj1(1 − p1)mk−nk−j ,

P0(fqom(q) = 1)

=
mk−nk∑

j=max(0,qk −nk)

(
mk − nk

j

)

pj0(1 − p0)mk−nk−j ,

where p0 � P o
0 (y1(1) = 1) = 0.02, p1 � P o

1 (y1(1) = 1) =
0.6. Then it is reasonable to set nk < qk < mk − nk, since
otherwise the worst-case (over θ) detection error will be 1.
However it is challenging to obtain the optimal qk analytically
to minimize the worst-case detection error; we do this by
brute-force numerical simulations. By varying the time k
from 1 to 40, we obtain the (approximate) security and the
optimal parameters q∗1 , . . . , q

∗
40 . Then we further simulate

the performance of the q-out-m algorithm when the optimal
parameters obtained above are used and the attacker is absent.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the trade-off between the detection
performance of a detector when the attacker is absent (termed
efficiency) and the “worst-case” detection performance when
the attacker, knowing the detector, is present (termed security).
The setting is that a binary hypothesis testing is conducted based
on measurements from a set of sensors, some of which can be
compromised by an attacker and their measurements can be
manipulated arbitrarily. We first provided the fundamental lim-
its of the trade-off between the efficiency and security of any
detector. We then presented detectors that possesses the limits
of the efficiency and security. Therefore, a clear guideline on
how to balance the efficiency and security has been established
for the system operator. An interesting point of the fundamental
trade-off is that in some cases, the maximal efficiency and the
maximal security can be achieved simultaneously, i.e., the maxi-
mal efficiency (security) can be achieved without compromising
any security (efficiency). In addition, two extensions were in-
vestigated: secure sensors are assumed for the first one, and
the detection performance beyond the efficiency and security
is concerned for the second one. The main results were ver-
ified by numerical examples. Investigating the problem when
the measurements from the benign sensors are not i.i.d. is a
future direction.

APPENDIX A
THE PROOF OF THEOREM 2

The following lemma is needed to prove Theorem 2:
Lemma 1: If Assumption 4 and 5 hold, then the following

statement is true:
1) For any w,

M0(w + 1) = M1(w). (28)

2) There exists a small enough ε > 0, such that logM0(w)
is well-defined on [−ε, 1 + ε], and logM1(w) is well-
defined on [−1 − ε, ε].

3) logM0(w), logM1(w) are strictly convex.
4) The derivative of logM0(w) and logM1(w) satisfy

(logM0(w))(1) |w=1 = D(1‖0). (29)

(logM0(w))(1) |w=0 = −D(0‖1). (30)

(logM1(w))(1) |w=0 = D(1‖0). (31)

logM1(w))(1) |w=−1 = −D(0‖1). (32)

Proof: By definition,

M0(w + 1) =
∫ ∞

−∞

(
dμ
dν

(y)
)w dμ

dν
(y)dν(y)

=
∫ ∞

−∞

(
dμ
dν

(y)
)w

dμ(y) = M1(w),

which proves (28).
AssumingM0(w1), M0(w2) <∞ andw1 < w2 , by the con-

vexity of the exponential function, we know that for any λ and
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0 < α, β < 1 and α+ β = 1,

0 < exp [(αw1 + βw2)λ] ≤ αew 1λ + βew 2λ.

Therefore 0 < M0(αw1 + βw2) ≤ αM0(w1) + βM0(w2) is
well-defined, which proves that the domain of logM0(w) is
convex.

Furthermore, by Assumption 4, 0 ∈ int(dom1) gives

1 ∈ int(dom0), (33)

Hence, [0, 1] ⊂ int(dom0), which proves that logM0(w) is
well-defined on [−ε, 1 + ε] if ε is small enough.

It is well known that logM0(w) is infinitely differentiable on
int(dom0) (see [22, Exercise 2.2.24]). Basic calculations give
that

(logM0(w))(2) (34)

=
∫

R

(
dμ
dν

(y)
)w (

log
(

dμ
dν

(y)
))2

dν(y) > 0 (35)

always holds, where (logM0(w))(2) is the second derivative.
The above quantity is strictly positive since the KL divergence
between probability measure μ and ν are strictly positive by
Assumption 5. Therefore, logM0(w) is strictly convex.

The domain and the strict convexity of logM1(w) can be
proved similarly.

Take the derivative of logM0(w) at w = 1 yields

(logM0(w))(1) |w=1 =
∫

R
λ(y)

dμ
dν

(y)dν(y)

=
∫

R
λ(y)dμ(y) = D(1‖0).

Equations (30), (31) and (32) can be proved similarly. �
We are now ready to prove Theorem 2:
Proof of Theorem 2: Define the derivative of logM0(w) to

beψ(w). Since logM0(w) is strictly convex, we know thatψ(w)
is strictly increasing and therefore, its inverse function is well
defined on [−D(0‖1),D(1‖0)]. Denote the inverse function as
ϕ(x). By the convexity of logM0(w), we have that

logM0(w) ≥ logM0(w∗) + ψ(w∗)(w − w∗). (36)

Hence, for any x ∈ [−D(0‖1),D(1‖0)], suppose that ψ(w∗) =
x, we have

wx− logM0(w) = [w∗ψ(w∗) − logM0(w∗)]

+ [(w − w∗)ψ(w∗) + logM0(w∗) − logM0(w)] .

Notice the last term on the RHS of the equation is non-positive.
Hence, we can prove that

I0(x) = w∗ψ(w∗) − logM0(w∗) = ϕ(x)x− logM0(ϕ(x)).
(37)

Take the derivative and second order derivative of I0(x) we
have

dI0(x)
dx

= ϕ(x),
d2I0(x)

dx2 =
1

ψ(1)(ϕ(x))
> 0,

where the last inequality is due to the fact that logM0(w) is
strictly convex, and thus its second derivative ψ(1) is strictly
positive. Hence we prove that I0(x) is twice differentiable and
strictly convex on [−D(0‖1),D(1‖0)]. Notice that

dI0(x)
dx

∣
∣
∣
∣
x=−D (0‖1)

= ϕ(−D(0‖1)) = 0,

we can prove that I0(x) is also strictly increasing. Similarly we
can prove the properties for I1(x).

Combining (37), (29) and (30), we can prove (14) and (15).
Equations (16) and (17) can be proved similarly.

Since

I0(0) = sup
w

0 · w − logM0(w) = sup
w

− logM0(w),

I1(0) = sup
w

0 · w − logM1(w) = sup
w

− logM1(w),

and

M0(w + 1) = M1(w),

We can conclude I0(0) = I1(0). �

APPENDIX B
THE PROOF OF THEOREM 3

The proof is divided into four parts, each of which is devoted
to one of the statements in Theorem 3.

Part I: For any index set O ⊂ M and χ ∈ R, define the
following Bayesian like detector:

fk,χ,O(Y′(k)) =
{

0 if
∑

i∈Oλ̄i(k) < χ,

1 if
∑

i∈Oλ̄i(k) ≥ χ,
(38)

where λ̄i(k) is the empirical mean of the log-likelihood ratio
from time 1 to k for sensor i, which is defined in (23). Denote

fχ,O = (f1,χ,O(Y′(1)), · · · , fk,χ,O(Y′(k)), · · · )
and

f ∗O � f0,O. (39)

It is well known that f ∗M minimize the average error prob-
ability [24]: e(θ = 0,O = ∅, k) + e(θ = 1,O = ∅, k), where,
recall, e(θ,O, k) is defined in (6). Notice that

lim inf
k→∞

− log(e(θ = 0,O = ∅, k) + e(θ = 1,O = ∅, k))
k

= lim inf
k→∞

− log maxθ e(θ,O = ∅, k)
k

.

Hence, when the attacker is absent, f ∗M is optimal in the
sense that the rate ρ defined in (8) is maximized. Furthermore,
Cramér’s Theorem gives that E(f ∗M) = mI0(0) = mC. There-
fore, E(f) ≤ mC holds for any detector f .

Part II: In this part, we show S(f) ≤ (m− 2n)+C. The proof
is by construction: we construct a attack strategy g∗ such that,
for any detection rule f , the following inequality holds:

ρ(f, g∗) ≤ (m− 2n)+C. (40)

Let O′ = {1, . . . , n} and O′′ = {m− n+ 1, . . . ,m}. The at-
tack strategy g∗ is as follows.
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i) When θ = 0, sensors in O′ are compromised and the dis-
tributions are flipped, i.e., the measurements of sensors in
O′ are i.i.d. as μ.

ii) When θ = 1, sensors inO′′ \ O′ are compromised and the
distributions are flipped.

Thus, under attack g∗, for either θ = 1 or θ = 0, sensors in O′

will follow distribution μ and sensors in O′′ \ O′ will follow
distribution ν. In other words, only sensors in M\ (O′ ∪ O′′)
have different distributions under different θ. Notice that when
m ≤ 2n, M\ (O′ ∪ O′′) = ∅, which means that ρ(f, g∗) = 0.
Ifm > 2n, by the optimality of the detection rule f ∗M\(O′∪O′′) de-
fined in (39), one obtains ρ(f, g∗) ≤ (m− 2n)C. Equation (40)
is thus obtained.

Part III: It is clear from the definitions of E(f) and S(f) that
S(f) ≤ E(f) holds.

Part IV: Consider the following product measures:

μa = μ× μ . . .× μ
︸ ︷︷ ︸

m−n
× ν × ν . . .× ν

︸ ︷︷ ︸
n

,

μka = μa × μa . . .× μa︸ ︷︷ ︸
k

and

ν∗ = ν × ν . . .× ν
︸ ︷︷ ︸

m

,

νk∗ = ν∗ × ν∗ . . .× ν∗︸ ︷︷ ︸
k

.

The measure μa is generated by an attack that flips the distri-
bution on the last n sensors, when the true hypothesis is θ = 1.
The measure ν∗ is generated by benign sensors when the true
hypothesis is θ = 0.

Now let us consider the following problem: given φ > 0, find
the detection rule f such that

Eν k∗ fk + φkEμka
(1 − fk ) (41)

is minimized for every k ≥ 1. Let fφ = (fφ,1 , . . . , fφ,k , . . .)
with fk,φ given by

fk,φ(Y′(k)) = fk,− log φ,{1,2,...,m−n}(Y′(k)), (42)

where, recall, the function fk,χ,O(Y′(k)) is defined in (38).
Then by the Bayesian decision-theoretic detection theory, fφ is
a solution to the above problem. Let

Eφ � lim inf
k→∞

− log Eν k∗ fφ,k

k

and

Sφ � lim inf
k→∞

− log Eμka
(1 − fφ,k )
k

.

Then from the optimality of fφ , for any φ > 0 and any detector
f = (f1 , . . . , fk , . . .), the following hold for any k:

If Eν k∗ fk ≤ Eν k∗ fφ,k , then Eμka
(1 − fk ) ≥ Eμka

(1 − fφ,k ).

This implies that

If lim inf
k→∞

− log Eν k∗ fk

k
≥ Eφ,

then lim inf
k→∞

− log Eμka
(1 − fk )
k

≤ Sφ.

Furthermore, the definitions of E(f) and S(f) yield

E(f) ≤ lim inf
k→∞

− log Eν k∗ fk

k
,

S(f) ≤ lim inf
k→∞

− log Eμka
(1 − fk )
k

.

Therefore, for any φ > 0 and any detector f , the following hold:

If E(f) ≥ Eφ, then S(f) ≤ Sφ.

Now let us evaluate Eφ and Sφ . Let φ̃ = − log φ/(m− n),
then Cramér’s theorem yields

Eφ =

{
0 if φ̃ ≤ −D(0‖1),
(m− n)I0(φ̃) if φ̃ > −D(0‖1),

and

Sφ =

{
0 if φ̃ ≥ D(1‖0),
(m− n)I1(φ̃) if φ̃ < D(1‖0).

Notice that the monotonicity of I0(·) on [−D(0‖1),∞) implies
that if 0 < Eφ < (m− n)I0(D(1‖0)) = (m− n)D(1‖0), φ̃ ∈
(−D(0‖1),D(1‖0)) holds. Therefore, if 0 < Eφ < (m−
n)D(1‖0), there holds

Sφ = (m− n)I1(I−1
0 (Eφ/(m− n))).

One thus obtains that for any detector f , if 0 < E(f) < (m−
n)D(1‖0)

S(f) ≤ (m− n)I1(I−1
0 (E(f)/(m− n))). (43)

Also, it is easy to see that if Eφ ≥ (m− n)D(1‖0), Sφ = 0
holds. Thus,

S(f) = 0 if E(f) ≥ (m− n)D(1‖0). (44)

Similarly, one considers the detection problem for the mea-
sures μk∗ and νka and obtains that for any detector f , if 0 <
E(f) < (m− n)D(0‖1)

S(f) ≤ (m− n)I0(I−1
1 (E(f)/(m− n))) (45)

and

S(f) = 0 if E(f) ≥ (m− n)D(0‖1). (46)

Then equation (21a) follows from (43) and (45), and equa-
tion (21b) from (44) and (46).

APPENDIX C
THE PROOF OF THEOREM 4

This theorem is proved by showing that f ∗zs = 0 (or 1) if
certain conditions are satisfied (i.e., Lemma 4). Furthermore,
the special structure of these conditions can ensure that, under
any attacks, f ∗zs = 0 (or 1) if the measurements of sensors in
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an attack free environment belong to a certain set, to which the
Cramér’s Theorem is applied.

Before proceeding, we need to define the following subsets
of Rm :

Definition 2: Define B−, B+ ⊂ Rm as

B− �
{

λ ∈ Rm :
m∑

i=1

λi < 0

}

,B+ �
{

λ ∈ Rm :
m∑

i=1

λi ≥ 0

}

.

Definition 3: Let O ⊂ M, j ∈ {0, 1} and z ∈ R+ , define a
ball as

Bal(O, j, z) =
{
λ ∈ Rm :

∑

i∈O
Ij (λi) < z

}
.

Definition 4: Let j ∈ {0, 1} and z ∈ R+ , define an extended
ball as

EBal(j, z, n) �
⋃

|O|=m−n
Bal(O, j, z).

From the definition of extended balls, it is clear that
[
λ1 . . . λm

] ∈ EBal(j, z, n)

if and only if the following inequality holds:

min
|O|=m−n

∑

i∈O
Ij (λi) < z.

Combining with the definition of f ∗zs , we know that at time
k, the output of f ∗zs is 0 if and only if

λ̄(k) �
[
λ̄1(k) · · · λ̄m (k)

] ∈ λ−(zs),

where λ−(zs) is defined as

λ−(zs) � EBal(0, zs , n)
⋃ (B−\EBal(1, zs , n)

)
.

The output is 1 if λ̄(k) ∈ λ+(zs), where

λ+(zs) � Rm\λ−(zs)

=
(
B+

⋃
EBal(1, zs , n)

)
\EBal(0, zs , n)

We first need the following supporting lemma.
Lemma 2: Given O1 , O2 ⊂ M � {1, 2, . . . ,m} with

|O1
⋂O2 | = p > 0, z ≤ pD(1‖0), the optimal value of the fol-

lowing optimization problem is given by pI1(I−1
0 (z/p)):

inf
x∈Rm

∑

i∈O1

I1(xi)

s.t.
∑

i∈O2

I0(xi) < z. (47)

Proof: Since I1(·) is nonnegative, I1(D(1‖0)) = 0 and
xi can take any value when i /∈ O2 , one can equivalently
rewrite (47) as

inf
x∈Rm

∑

i∈O1 ∩O2

I1(xi)

s.t.
∑

i∈O2

I0(xi) < z,

xi = D(1‖0), i ∈ O1 \ O2 .

By the nonnegativity of I0(·), the above equation is equivalent
to

inf
x∈Rm ,0<z ′≤z

∑

i∈O1 ∩O2

I1(xi)

s.t.
∑

i∈O1 ∩O2

I0(xi) < z′,

∑

i∈O2 \O1

I0(xi) ≤ z − z′, (48)

xi = D(1‖0), i ∈ O1 \ O2 .

To obtain the solution to the above equation, let us fist focus on
the following optimization problem:

min
x∈Rm

∑

i∈O
I1(xi)

s.t.
∑

i∈O
I0(xi) = z′, (49)

where O = O1 ∩ O2 . Denotes its optimal value by ψ(z′). In the
following, we show that

ψ(z′) = pI1(I−1
0 (z′/p)). (50)

We claim that a solution to (49) is

xi =
{
I−1
0 (z′/p) if i ∈ O, (51a)

whatever if i /∈ O. (51b)

With this claim, (50) clearly holds. In the following we show
that this claim is correct. Equation (51b) is trivial. We then focus
on (51a). Due to the convexity of the functions I0(·) and I1(·),
one obtains that for any x ∈ Rm ,

pI0

(
∑

i∈O
xi/p

)

≤
∑

i∈O
I0(xi),

pI1

(
∑

i∈O
xi/p

)

≤
∑

i∈O
I1(xi)

Therefore, without any performance loss, one may restrict the
solution to the set X∗ as follows:

X∗ � {x ∈ Rm : x1 = x2 = · · · = xp}.
Then it is clear from the monotonicity of I0 and I1 that (51a)
holds. This thus proves (50).

Notice thatψ(z′) in (50) is decreasing with respect to z′. Then
the fact that I0(−D(0‖1)) = 0 yields that (48) is equivalent to

min
x∈Rm

∑

i∈O1 ∩O2

I1(xi)

s.t.
∑

i∈O1 ∩O2

I0(xi) = z,

xi = −D(0‖1), i ∈ O2 \ O1 ,

xi = D(1‖0), i ∈ O1 \ O2 ,

which concludes Lemma 2 by (50). �
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Lemma 3: Assume that (ze , zs) are an admissible pair, then
the following statements are true:

1) Bal(M, 0, ze) ⊆ B−.
2) Bal(M, 1, ze) ⊆ B+ .
3) EBal(0, zs , n)

⋂
EBal(1, zs , n) = ∅.

4) EBal(1, zs , n)
⋂

Bal(M, 0, ze) = ∅.
5) EBal(0, zs , n)

⋂
Bal(M, 1, ze) = ∅.

Proof: 1): It suffices to prove that given any x ∈ Rm , if
x ∈ B+ , then x �∈ Bal(M, 0, ze). By the convexity of I0(x),
one obtains that

∑

i∈M
I0(xi) ≥ mI0(1/m

∑

i∈M
xi) ≥ mI0(0) = mC,

where the second inequality follows from x ∈ B+ and the fact
that I0(x) is increasing whenx ≥ 0. Notice that by its definition,
ze ≤ mC holds. The proof is done.

2): This can be proved similarly to 1).
3): By the definition of EBal, we need to prove that

for any O1 ,O2 with |O1 | = |O2 | = m− n, Bal(O1 , 0, zs) ∩
Bal(O2 , 1, zs) = ∅ holds. Notice that when z ≤ pD(1‖0),
pI1(I−1

0 (z/p)) is increasing with respect top. Thus by Lemma 2,
it suffices to prove that (m− 2n)I1(I−1

0 (zs/(m− 2n))) ≥ zs ,
which is true because 0 ≤ zs ≤ (m− 2n)C, pI1(I−1

0 (z/p)) is
decreasing with respect to z when z ≤ pD(1‖0), and (m−
2n)I1(I−1

0 (0)) = (m− 2n)C.
4): Similar to 3), it suffices to prove that for any O1 with

|O1 | = m− n, Bal(O1 , 0, zs) ∩ Bal(M, 0, ze) = ∅ holds. By
Lemma 2, it suffices to prove that (m− n)I1(I−1

0 (ze/(m−
n))) ≥ zs . Then it is equivalent to prove that (m−
n)I1(I−1

0 (he(zs)/(m− n))) ≥ zs , which follows from the def-
inition of he(z) and the fact that pI1(I−1

0 (z/p)) is decreasing
with respect to z when z ≤ pD(1‖0).

5): This can be proved similarly to 4). �
From Lemma 3, one obtains straightforwardly the following

lemma.
Lemma 4: Assume that (ze , zs) are an admissible pair, then

the following set inclusions are true:
1) EBal(0, zs , n) ⊆ λ−(zs).
2) EBal(1, zs , n) ⊆ λ+(zs).
3) Bal(M, 0, ze) ⊆ λ−(zs).
4) Bal(M, 1, ze) ⊆ λ+(zs).
We are now ready to prove Theorem 4.
Proof of Theorem 4: We focus on the proof of S(f ∗zs ) ≥ zs ,

and a similar (and simpler) approach can be used to prove
E(f ∗zs ) ≥ ze . Notice that EBal(0, zs , n) ⊆ λ−(zs) in Lemma 4
gives that, under any attacks, there holds Bal(M, 0, zs) ⊆
λ−(zs). Therefore,

lim sup
k→∞

1
k

log P0(f ∗zs ,k = 1)

≤ lim sup
k→∞

1
k

log P o
0 (λ̄(k) ∈ Rm \ Bal(M, 0, zs))

≤ − inf
x∈Rm \Bal(M,0,zs )

m∑

i=1

I0(xi)

= −zs, (52)

where the second inequality holds because of the Cramér’s The-
orem and the fact that Rm \ Bal(M, 0, zs) is closed.

Similarly, by EBal(1, zs , n) ⊆ λ+(zs) in Lemma 4, one ob-
tains

lim sup
k→∞

1
k

log P1(f ∗zs ,k = 0) ≤ −zs. (53)

It follows from (52) and (53) that S(f ∗zs ) ≥ zs . The proof is thus
complete. �

APPENDIX D
THE PROOF OF THEOREM 5

Define the following two functions h0(z), h1(z) : (0,Dmin)
�→ (0,Dmin):

h0(z) = I0(I−1
1 (z)),

h1(z) = I1(I−1
0 (z)).

Then we have the following two lemmas on h0(z) and h1(z).
Lemma 5: Both h0(z) and h1(z) are convex. Furthermore,

the following equality holds:

h0(C) = h1(C) = C. (54)

Proof: The equation (54) follows directly from (18) and (19).
To prove the convexity ofh0(z) andh1(z), we first need to prove
that I−1

0 (x) is convex and I−1
1 (x) is concave on [0, Dmin ].

Notice that if ψ is the inverse function of φ and φ are twice
differentiable, then by chain rule

ψ(2)(x) = − φ(2)(ψ(x))
[
φ(1)(ψ(x))

]3 .

Therefore, since I0(x) (I1(x)) is strictly convex and strictly de-
creasing (increasing) on [−D(0‖1), D(1‖0)], I−1

0 (x) (I−1
1 (x))

is convex (concave) on [0, Dmin ].
The convexity ofh0(z) andh1(z) then follows the fact that the

composition of a convex and increasing (decreasing) function
with a convex (concave) function is convex [25]. �

We are now ready to prove Theorem 5
Proof: By chain rule, we know that

dh0(z)
dz

|z=C = I
(1)
0 (x)|x=0 × 1

I
(1)
1 (x)|x=0

= −1.

Therefore, by the convexity of h0(z), we know that

h0(z) ≥ h0(C) − (z − C) × dh0(z)
dz

|z=C = 2C − z.

Similarly, one can prove that

h1(z) ≥ 2C − z.

Hence, by the definition of h(z),

h(z) ≥ 2(m− n)C − z,

which implies that h((m− 2n)C) ≥ mC holds and f ∗(m−2n)C
achieves maximum security and efficiency simultaneously. �
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