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a b s t r a c t

This paper considers optimal attack attention allocation on remote state estimation in multi-systems.
Suppose there are M independent systems, each of which has a remote sensor monitoring the system and
sending its local estimates to a fusion center over a packet-dropping channel. An attacker may generate
noises to exacerbate the communication channels between sensors and the fusion center. Due to capacity
limitation, at each time the attacker can exacerbate at most N of the M channels. The goal of the attacker
side is to seek an optimal policy maximizing the estimation error at the fusion center. The problem is
formulated as a Markov decision process (MDP) problem, and the existence of an optimal deterministic
and stationary policy is proved. We further show that the optimal policy has a threshold structure,
by which the computational complexity is reduced significantly. Based on the threshold structure, a
myopic policy is proposed for homogeneous models and its optimality is established. To overcome the
curse of dimensionality of MDP algorithms for general heterogeneous models, we further provide an
asymptotically (as M and N go to infinity) optimal solution, which is easy to compute and implement.
Numerical examples are given to illustrate the main results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Motivations and backgrounds. Cyber–physical systems, inte-
grating information technology infrastructures with physical pro-
cesses, are ubiquitous and usually critical in modern societies.
Examples include sensor networks, power grids, water and gas
supply systems, transportation systems, and water pollutionmon-
itoring systems. The use of open communication networks, though
enablingmore efficient design and flexible implementation,makes
cyber–physical systems more vulnerable to attacks (Pasqualetti,
Dorfler, & Bullo, 2015; Teixeira, Sou, Sandberg, & Johansson, 2015).
Illustrative examples are Iran’s nuclear centrifuges accident (Far-
well & Rohozinski, 2011) and western Ukraine blackout (BBC,
2016).
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Many research works on attackers’ possible behaviors for
cyber–physical systems have been done recently. Generally speak-
ing, attacks can be classified as either denial of service (DoS) attacks
or deception attacks (Amin, Cárdenas, & Sastry, 2009). DoS attacks,
comprising availability of data, are most likely threats (Byres &
Lowe, 2004) due to their easy implementation. DoS attacks in net-
worked control systems are studied in Amin et al. (2009). Optimal
off-line DoS attack on remote state estimation over a finite horizon
for a single sensor system is investigated in Zhang, Cheng, Shi,
and Chen (2015). An interactive decision of sending data by sensor
and jamming channel by an attacker for remote state estimation
in a zero-sum game setting is studied in Li, Shi, Cheng, Chen,
and Quevedo (2015), and a similar setting is investigated for a
control system in Gupta, Langbort, and Basar (2010). Optimal
DoS attacks were also studied in the context of detection (Ren,
Mo, & Shi, 2014). Deception attacks, comprising integrity of data,
are more subtle. Various types of deception attacks have been
studied, for example, replay attacks (Mo& Sinopoli, 2009), stealthy
deception attacks (Guo, Shi, Johansson, & Shi, in press) and covert
attacks (Teixeira et al., 2015).

Related works and contributions. In this paper, we consider the
DoS attacks. Each sensor monitors a (different) system and sends
its estimates to a fusion center over a packet-dropping channel. An
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attacker is present and is capable of attacking a certain number of
channels at each time. When a channel is under attack, the packet
arrival rate decreases. The problem is to study the optimal attack
policy to maximize the averaged estimation error at the fusion
center. A threshold structure of optimal policies is proved. The
related works are Leong, Dey, and Quevedo (2015), Mo, Sinopoli,
Shi, and Garone (2012) and Ren, Cheng, Chen, Shi, and Zhang
(2014), which study the structure of sensor scheduling policy. Our
work differs from theseworks as follows. First, ourwork focuses on
multi-systems, while a single sensor scenario is studied in afore-
mentioned three papers. Second, we use a fundamentally different
methodology. Specifically, both Mo et al. (2012) and Ren, Cheng et
al. (2014) proved the structure results by analyzing the stationary
probability distribution of states, which, however, works only in
very special and simple cases (e.g., a single sensor case). On the
contrary, we resort to the MDP theory, a more general and power-
ful tool. Although an MDP approach was also adopted in Leong
et al. (2015), the methods used to prove either the existence of
optimal stationary and deterministic policy or the threshold struc-
ture is significantly different due to the different problem models
(multi-systems versus single sensor system, different cost/reward
structures2 ). Lastly, we provide an asymptotically optimal policy,
which is rather easy to compute and implement.

In summary, themain contributions of this paper are as follows.

(1) The problem of attack on remote state estimation in multi-
systems is studied by an MDP formulation. The existence
of a deterministic and stationary optimal policy is proved,
which means that standard MDP algorithms (e.g., value it-
eration algorithm) can be utilized to compute the optimal
policy. Moreover, a threshold structure of optimal policy is
proved, by exploiting which a specialized algorithm may
be developed to reduce the computational complexity. By
the threshold structure, a myopic policy is proposed and
its optimality is established for homogeneous models. The
myopic policy is such that the expected reward at the next
time is maximized.

(2) To overcome the curse of dimensionality of MDP algorithms
for general heterogeneous models, we provide an asymp-
totically optimal index-based policy using the multi-armed
bandit theory. Since the indices are computed based on
each system solely, they are quite easy to compute. The
index-based policy is implemented just by comparing these
indices. What is more, our numerical examples show that
this asymptotically optimal policy works quite well even
when the number of total systems is small.

The remainder of this paper is organized as follows. In Section 2,
the mathematical formulation of the considered problem is given.
The main results, including the MDP formulation, existence of a
stationary and deterministic optimal policy, threshold structure
of the optimal policy and the asymptotically optimal index-based
policy, are provided in Section 3. The numerical examples are given
in Section 4 to illustrate the main results, after which we conclude
the paper in Section 5. All the proofs are presented in Appendices.

Notation: R (R+) is the set of real (nonnegative) numbers and
N the set of nonnegative integer numbers. Sn

+
(Sn

++
) is the set of

n by n real positive semi-definite (definite) matrices. For a matrix
X , we use Tr(X), X⊤ and |X | to denote its trace, transpose and
spectral radius, respectively. We write X ⪰ 0 (X ≻ 0) if X ∈ Sn

+

(X ∈ Sn
++

). For a vector x, denote its ith element as x[i]. We use
◦ to denote function composition, i.e., for two functions f and g ,
(f ◦ g)(x) = f (g(x)), and g i(x) ≜ g ◦ g ◦ · · · ◦ g  

i times

(x) with g0(x) ≜ x.

2 See the details in Footnote 8.

Fig. 1. Remote state estimation with an attacker.

Let× denote the Cartesian product. For a setA, define the indicator
function as 1A(x) = 1, if x ∈ A; 0 otherwise. Let Pr(·)(Pr(·|·)) be
the (conditional) probability. For x ∈ R, denote by ⌊x⌋ the largest
integer less than or equal to x. Let E[·] be the expectation of a
random variable.

2. Problem formulation

2.1. Remote estimation with packet-dropping channels

There are totallyM independent discrete-time (i.e., sampled) lin-
ear time-invariant systems and M sensors. The ith sensor monitors
the ith system (Fig. 1):

x(i)k+1 = Aix
(i)
k + ω

(i)
k , (1a)

y(i)k = Cix
(i)
k + υ

(i)
k , (1b)

where x(i)k ∈ Rni is the system state vector and y(i)k ∈ Rmi is the
observation vector. The noises ω

(i)
k and υ

(i)
k are i.i.d. white Gaussian

random variables with zero mean and covariance Qi ⪰ 0, Ri ≻ 0,
respectively. The initial state x(i)0 is a zero-mean Gaussian random
variable that is uncorrelated with ω

(i)
k and υ

(i)
k . It is assumed that

the systems at different sensors are independent of each other.
To avoid trivial problems, we assume the systems are unstable,
i.e., |Ai| > 1, ∀i = 1, . . . , M. The pair (Ci, Ai) is assumed to be
detectable and (Ai,Q

1/2
i ) stabilizable.

Each sensor is assumed to be intelligent in the sense that a
Kalman filter is run locally. With the above detectability and stabi-
lizability assumptions, the estimation error covariance associated
with each local Kalman filter converges exponentially to a steady
state (Anderson & Moore, 2012). On the other hand, since the na-
ture of asymptotic behaviors of remote estimation undermalicious
attacks (which will be elaborated later) over an infinite horizon
cost is investigated, without any performance loss, we assume the
Kalman filter at each sensor enters into the steady state at k = 0.
Let the steady state estimation error covariance at sensor i be P̂ (i).

At each time k, sensor i sends the output of its local Kalman
filter (i.e., the a posterior minimum mean square error (MMSE)
estimate) x̂(i)k (Anderson & Moore, 2012) to a fusion center over a
packet-dropping communication channel. Let γ

(i)
k ∈ {0, 1} denote

whether or not the packet is received error-free by the fusion
center. If it arrives successfully, γ (i)

k = 1; γ (i)
k = 0 otherwise. Again

since the asymptotic behavior over an infinite horizon is studied,
it is assumed without any performance loss that γ

(i)
0 = 1, ∀i =

1, . . . , M. Since the sensor sends the local MMSE estimates instead
of raw measurements, the MMSE estimate and the associated
error covariance at the fusion center (whether or not the attacker
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introduced later is present) for k ≥ 1 is as follows:

x̃(i)k =

{
x̂(i)k , if γ (i)

k = 1,

Aix̃
(i)
k−1, if γ (i)

k = 0,

P̃ (i)
k =

{
P̂ (i), if γ (i)

k = 1,

hi(P̃
(i)
k−1), if γ (i)

k = 0,

where functions hi, 1 ≤ i ≤ M, are defined as follows:

hi(X) = AiXA⊤

i + Qi, for X ∈ Sni
+.

That is, at each time, for each system, when the local estimate ar-
rives successfully, the fusion center synchronizes its estimate with
this received local estimate and the associated estimation error
covariance is thus reset to the local steady state estimation error
covariance; conversely, when a packet dropout occurs, the fusion
center generates its current estimate by the prediction based on
its previous time estimate and the system dynamic model, and
the current associated estimation error covariance is a function
(i.e., hi(·)) of the previous one. Notice that by the assumption γ

(i)
0 =

1, ∀i, the starting point at the fusion center is x̃(i)0 = x̂(i)0 and P̃ (i)
0 =

P̂ (i).

2.2. Attack model

There is an attacker capable of generating noises to exacerbate
the communication channels between sensors and the fusion cen-
ter. Due to capacity limitation, at each time the attacker can only
choose at most N of the M channels to attack. Let η

(i)
k ∈ {0, 1}

indicate whether or not the ith channel is under attack: η
(i)
k = 1 if

it is; η
(i)
k = 0 otherwise. We make the following assumption about

the effects of the attacks on packet dropouts.

Assumption 1. The packet loss process ismemorylesswith respect
to the considered attacks, i.e., the following equality holds for any
k ≥ 1:

Pr(γ (i)
1 , . . . , γ

(i)
k |η

(i)
1:k) =

k∏
j=1

Pr(γ (i)
j |η

(i)
j ),

where η
(i)
1:k ≜ (η(i)

1 , . . . , η
(i)
k ). Let Pr(γ (i)

k = 1|η(i)
k = 0) = ϵi and

Pr(γ (i)
k = 1|η(i)

k = 1) = ϵi. We assume that 0 < ϵi < ϵi ≤ 1.

It is assumed that the attacker has the knowledge of system
dynamics (i.e., Ai, Ci,Qi and Ri

3 ), has access to the knowledge of
{γ

(i)
k }k∈N, ∀i = 1, . . . , M, and is able to learn the channels’ packet

arrival rate with or without attacks (i.e., ϵi and ϵi) from realization
of {γ

(i)
k } when k < 0. The assumption of the attacker’s knowledge

is obviously quite strong, which nevertheless is not impossible to
satisfy in practice. This strong assumption is in accordance with
Kerckhoffs’s principle (Kerckhoffs, 1978), i.e., the security of the
system should not depend on its obscurity. From the perspective
of a system manager, the system performance under such ‘‘worst
case’’ attacks is intended to be a benchmark. As such, many works
assume that the attacker has full information of the system; see for
example Li et al. (2015) and Smith (2011). Interested readers are
referred to Teixeira et al. (2015) for a summary of different attack
models. One may relax this assumption and assume the attacker
has only partial information of the system model. To tackle this
scenario, learning techniques such as in Sutton and Barto (1998)
may be applied.We are planning to investigate this in future work.
Also, onemay adopt aweaker assumption that the full information

3 The steady state estimation error covariance P̂ (i) thus can be obtained by solving
a discrete-time algebraic Riccati equation.

of γ
(i)
k may not be available at the attacker at time k + 1 for

every k ≥ 1. Then since the underlying state cannot be directly
observed, theMDP formulation would be generalized into a partial
observableMDP formulation. Nevertheless, results like Theorems 1
and 2 still hold with certain partial order (Dushnik &Miller, 1941)
introduced.

At each time, the attacker determines the subset of the com-
munication channels to be attacked based on all the information it
collects. Let γk = (γ (1)

k , . . . , γ
(M)
k ) and γ1:k = (γ1, . . . , γk); ηk and

η1:k are defined in the same way. Define a feasible attack attention
allocation decision rule at time k as a stochastic kernel πk from
γ1:k−1 and η1:k−1 to Ω ,4 where Ω is the set of all feasible ηk:

Ω ≜

{
η ∈ {0, 1}M :

M∑
i=1

η[i] ≤ N

}
.

Let π = (π1, . . . , πk, . . .) be the infinite-horizon attack policy.
A policy π is feasible only if πk, k ≥ 1 are feasible. Let Π be the
set of all feasible policies. The reward (from the perspective of
the attacker) associated with an attack policy π is the averaged
infinite-horizon estimation error at the centers defined as

R(π ) = lim inf
T→∞

1
T
E

[
T∑

k=1

M∑
i=1

Tr(P̃ (i)
k )

]
. (2)

The goal of the attacker is to seek a feasible policy maximizing the
above reward:

Problem 1.

sup
π∈Π

R(π ). (3)

To avoid trivial problems, we assume ϵi > 1 −
1

|Ai|2
, ∀i. Oth-

erwise, the attacker may consistently attack the communication
channel of the ith system to gain an infinite reward since P̃ (i)

k → ∞

as k → ∞ in the presence of consistent attacks.

3. Main results

In this section, we solve Problem 1 by formulating it as a MDP
problem. We show that, without any performance loss, the attack
decision rule can be restricted to a smaller class: the optimal
policy is deterministic (i.e., the stochastic kernel πk is reduced to
a measurable function), stationary (independent of time index k)
and Markovian (the argument is not the whole history γ1:k−1). We
further prove that the optimal policy has a threshold structure. For
the asymptotic regime (i.e., M → ∞ and N → ∞), an explicit form
of the optimal policy is provided, which is quite easy to compute
and implement.

3.1. MDP formulation

Before proceeding, we define a random variable τ
(i)
k as

τ
(i)
k = k − max{k∗

: γ
(i)
k∗ = 1, 0 ≤ k∗

≤ k}, (4)

which indicates the time duration from the last successful trans-
mission time to time k. Let τk = (τ (1)

k , . . . , τ
(M)
k ).

4 We say πk is a stochastic kernel from γ1:k−1 and η1:k−1 to Ω if the map
πk : ℘(Ω) × {0, 1}M(k−1)

× Ωk−1
↦→ [0, 1] with ℘(Ω) being the power set of

Ω has the following properties: (1) For any realization of γ1:k−1 ∈ {0, 1}M(k−1)

and η1:k−1 ∈ Ωk−1 , πk(·|γ1:k−1, η1:k−1) is a probability measure on ℘(Ω). (2) For
any set B ∈ ℘(Ω), πk(B|·) is a measurable function on {0, 1}M(k−1)

× Ωk−1 . This
kernel-form definition includes the possibility that the attack policy is randomized.
Nevertheless, in Section 3 we prove that there exists a deterministic optimal attack
policy.
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For ease of exposition, except for themyopic policy and asymp-
totic analysis, in the remainder of this section we assume that
M = 2 and N = 1. We remark that the following MDP formulation
and the existence of a deterministic and stationary optimal policy
(Theorem 1) can be extended trivially to the cases with general M
and N. For the threshold structure, see Remark 1.

Nowwe describe the formulated infinite-horizon discrete-time
MDP by a quadruplet (S, A, P(·|·, ·), r(·, ·)). Each item in the tuple
is elaborated as follows.

(1) The state at time step k ≥ 1 is defined as sk ≜ (τ (1)
k−1, τ

(2)
k−1).

Therefore, the state space S = N2.
(2) The action space A ≜ {0, e1, e2}, where 0 = (0, 0) means

that none of the systems is attacked, e1 = (1, 0) and
e2 = (0, 1) mean that only the first and only the second are
attacked, respectively.

(3) The transition probability is stationary. Let s = (j1, j2), s′ =

(j′1, j
′

2) with ji, j′i ∈ N, i = 1, 2 and a ∈ A, then ∀k ≥ 1,

P(s′|s, a) ≜ Pr(sk+1 = s′|sk = s, ak = a)
≜ p1(j′1|j1, a[1])p2(j′2|j2, a[2]),

where for i = 1, 2,

pi(j′i|ji, a[i]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϵi, if j′i = 0, a[i] = 0,
ϵi, if j′i = 0, a[i] = 1,
1 − ϵi, if j′i = ji + 1, a[i] = 0,
1 − ϵi, if j′i = ji + 1, a[i] = 1,
0, otherwise.

(4) The one-stage reward is independent of the action and de-
fined as

r(s = (j1, j2), a) = Tr(hj1
1 (P̂

(1))) + Tr(hj2
2 (P̂

(2))). (5)

Let Hk ≜ (s1, a1, . . . , sk) be the history of states and actions up
to time k, and θ = (θ1, . . . , θk, . . .) be an admissible policy with θk
as a stochastic kernel from Hk to A. Let Θ be the class of all such
admissible policies. Define the reward associated with initial state
s1 = s and policy θ by

J (s, θ ) = lim inf
T→∞

1
T
Eθ
s

[
T∑

k=1

r(sk, ak)

]
.

Let s1:k ≜ (s1, . . . , sk). It is evident that s1:k−1 is equivalent to
γ1:k−1, and thus θ is also equivalent to π (specialized to the case
M = 2, N = 1). One thus verifies that Problem 1 (specialized to
the case M = 2, N = 1) can be equivalently transformed to the
following problem.

Problem 2. Find the optimal policy θ∗
∈ Θ such that

J ((0, 0), θ∗) = sup
θ∈Θ

J ((0, 0), θ ).

3.2. Structural results

We first show that the optimal policy is stationary and deter-
ministic, and satisfies an equality.We say that θ = (θ1, . . . , θk, . . .)
is stationary and deterministic, if there exists a measurable func-
tion f : S ↦→ A satisfying ∀k ≥ 1, θk(f (s)|H′

k) = 1 for any
H′

k ≜ (s1, a1, . . . , sk = s). Therefore, in the following, with abuse
of notations, we use f to represent a stationary and deterministic
policy and let F be the set of all admissible stationary and deter-
ministic policies. For a measurable function q : S ↦→ R, denote

G(q, s, a) ≜
∑
s′∈S

q(s′)P(s′|s, a). (6)

We then have the following theorem.

Theorem 1. There exists an optimal stationary and deterministic
policy f ∗

∈ F such that

J (s, f ∗) ≥ J (s, θ ), ∀s ∈ S, θ ∈ Θ.

Moreover,

f ∗(s) =argmax
a∈A

{r(s, a) − ϱ∗
+ G(q, s, a)}, (7)

J (s, f ∗) =ϱ∗,

where q : S ↦→ R and ϱ∗
∈ R satisfy

q(s) = max
a∈A

{r(s, f (s)) − ϱ∗
+ G(q, s, a)}. (8)

Theorem1 says that deterministic and stationary optimal policy
exists and can be computed as (7) with a differential value function
(i.e., q(s)) satisfying the Bellman equation (8). This provides a
theoretic basis for further analysis (structural properties of opti-
mal policies) and computation methods. In particular, with some
additional technical requirements,5 the value iteration algorithm
converges. Furthermore, following the ideas in Sennott (2009,
Chapter 8), one can use a value iteration algorithm for finite states
to approximate the countable state space in our case, and compute
the optimal policy f ∗, the differential value function q and the
optimal averaged reward ϱ∗.

We now present a nice structure of the optimal policy f ∗, which
helps reduce the computational complexity of the MDP algorithm
significantly.

Theorem 2. There exists a critical curve lc(j1, j2) = 0, of which the
function lc(j1, j2) is non-decreasing (and non-increasing) with respect
to j1 (j2), dividing N2 into disjoint regions such that

(1) f ∗(s = (j1, j2)) = e1, if lc(j1, j2) > 0;
(2) f ∗(s = (j1, j2)) = e2, if lc(j1, j2) ≤ 0.

Due to their ease in implementation and enabling efficient
computation, structural results of the optimal deterministic and
stationary policy are verymuch appealing to decisionmakers (Put-
erman, 2005). Thanks to the threshold structure, one only needs to
store the transition points a priori, and the online implementation
is simply by comparisons. Specialized algorithms can be developed
to search among a special class (much smaller) of policies instead of
general backward induction algorithms (less efficient) (Puterman,
2005).

Remark 1. The threshold structure can be extended to cases
with general M and N. For 1 ≤ i ≤ M, define j−i ≜
(j1, . . . , ji−1, ji+1, . . . , jM) as the state of the whole system except
for the ith system. Then the optimal policy has the following
threshold structure. Let state s = (j1, . . . , jM), there exist measur-
able functions li : NM−1

↦→ N such that for any 1 ≤ i ≤ M, the
optimal policy f ∗ has the form:

(1) if ji ≥ li(j−i ), f
∗(s) ∈ Ei;

(2) if ji < li(j−i ), f
∗(s) ∈ Ω \ Ei,

where Ei represents the feasible attack attention allocation
subset such that the ith system is under attack:

Ei ≜

{
η ∈ {0, 1}M :

M∑
i=1

η[i] ≤ N, η[i] = 1

}
.

Moreover, the functions li, 1 ≤ i ≤ M are such that at each time
there are exactly N systems to be attacked.

5 One may verify that all requirements in Zhu and Guo (2005, Assumption 3.8)
are satisfied in our case. Due to the limited space, we omit the verification here.
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We now consider the homogeneous models where the system
dynamics are the same and ϵi, ϵi, 1 ≤ i ≤ M are identical. For the
homogeneous models with general M and N, we propose a myopic
policy as follows. At each time k, the attacker attacks the N systems
with largest τ

(i)
k−1. Denote this myopic policy by πm. Then based on

the above threshold structure and the symmetry of homogeneous
models, one easily obtains the following corollary, the proof of
which is omitted.

Corollary 1. The myopic policy πm is optimal to Problem 1 for
homogeneous models, i.e., R(πm) = supπ∈Π R(π ).

Note that to implement themyopic policyπm, no specificmodel
knowledge is required. Instead, one only needs to know the real-
ization of the packet arrival process.

3.3. Explicit asymptotic optimal policy

When M is large, the ‘‘curse of dimensionality’’ will render
MDP numerical algorithms impractical. Then for heterogeneous
models, one may ask whether or not there exists an algorithm that
resembles the above myopic policy. The answer is positive. In the
following, we provide an algorithm that is quite easy to compute
and implement. Furthermore, it is proved to be asymptotically
optimal as M and N go to infinity.

3.3.1. Virtual attack model
To present the algorithm,we introduce an virtual attacker. Con-

sider the ith system in isolation. Assume that an (virtual) attacker
is able to attack the ith system all the time, while if the attacker
refuses to launch an attack at some time, it receives an extra
constant ‘‘subsidy’’ zi (which is independent of the system state
τ
(i)
k−1). In other words, the one-stage reward is given by

ri(τ
(i)
k−1, η

(i)
k ) = Tr(h

τ
(i)
k−1
i (P̂ (i))) + (1 − η

(i)
k )zi.

The goal of the attacker is to maximize the averaged infinite-
horizon accumulated reward as in Problem 1 for the sole ith sys-
tem: lim infT→∞

1
TE

[∑T
k=1ri(τ

(i)
k−1, η

(i)
k )

]
. Denote the optimal rule

for the state τ
(i)
k−1 = j with j ∈ Nwhen the subsidy is zi as d∗

i (j, zi)
6

: d∗

i (j, zi) = 0 if no attacks and d∗

i (j, zi) = 1 otherwise.
To maximize the average infinite-horizon reward for the sole

ith system, one can also formulate it as anMDP problem and prove
the existence of optimal deterministic and stationary policy. Fur-
thermore, as for Theorem 2, one can prove the monotonicity of the
differential value function as well, based on which the threshold
structure of d∗

i (j, zi) can be proved. Specifically, for any 1 ≤ i ≤ M,
given zi, d∗

i (j, zi) has a form as

d∗

i (j, zi) =

{
1, if j ≥ ℓi(zi),
0, if j < ℓi(zi),

(9)

where ℓi(zi) is a function of zi.

3.3.2. Index-based policy
We introduce an index oi(·) : N ↦→ R associated with τ

(i)
k−1 = j,

which satisfies that, for 1 ≤ i ≤ M,

vi(j)

[
1 − (1 − ϵi)j

ϵi
oi(j) +

j∑
n=0

Tr(hn
i (P̂

(i)))(1 − ϵi)n

+ (1 − ϵi)j
∞∑
n=1

Tr(hn+j
i (P̂ (i)))(1 − ϵi)n

]

6 Weuse this notation to emphasize the dependence on zi . It is quite easy to show
that the optimal rule is stationary, we thus omit the time index k.

=vi(j + 1)

[
1 − (1 − ϵi)j+1

ϵi
oi(j) +

j∑
n=0

Tr(hn
i (P̂

(i)))(1 − ϵi)n

+ (1 − ϵi)j+1
∞∑
n=0

Tr(hn+j+1
i (P̂ (i)))(1 − ϵi)n

]
, (10)

where vi(j) is computed by

vi(j) =
1

ϵi−1 − (1 − ϵi)jϵi−1 + (1 − ϵi)jϵi−1 .

Notice that oi(·) only depends on the ith system and is irrelative
with the others. Notice also that oi(j) in (10) can be interpreted as
the subsidy such thatwhen the ith system state τ

(i)
k−1 = j, the action

‘‘attack’’ and ‘‘not attack’’ are equally attractive if the single ith
system is considered. We propose an index-based policy, denoted
by πd, as follows. At each time k, the attacker attacks the N systems
of greatest index oi(τ

(i)
k−1).We then have the following theorem.

Theorem 3. The index-based policy πd is asymptotically optimal to
Problem 1. That is, as M → ∞ and N → ∞ with N < M, R(πd) → R∗,
where R∗

= supπ∈Π R(π ).

Remark 2. Numerical simulations in Section 4 show that the
index-based policy πd works quite well even when M and N are
small.

Remark 3. In some scenarios, the attacker might get a larger
reward for attacking one system than the other. Then onemay add
different weight to attacks on different channels, i.e., the reward
in (2) is replaced with

R(π ) = lim inf
T→∞

1
T
E

[
T∑

k=1

M∑
i=1

wiTr(P̃
(i)
k )

]
,

with wi ∈ R+ being weight coefficients. The main results in this
paper, Theorems 1–3, still hold. Amending the reward function by
adding into the coefficients, the analysis in the Appendices remains
valid.

4. Numerical examples

In this section, we use numerical examples to illustrate the
threshold structure of the optimal policy (Theorem2), the optimal-
ity of themyopic policy for homogeneousmodels (Corollary 1) and
the asymptotic optimality of the index-based policy (Theorem 3).

Example 1. We let M = 2 and N = 1. The parameters involved are
as follows:

A1 =

[
1.2 0.2
0.3 1

]
, A2 =

[
1.2 0.15
0 1.1

]
,

Q1 =

[
2 0
0 1

]
, Q2 =

[
1 0.5
0.5 0.5

]
,

C1 = [1, 0], C2 = [1, 0.2], R1 = 1, R2 = 3, ϵ1 = 0.95, ϵ1 =

0.5, ϵ2 = 0.9 and ϵ2 = 0.4. Notice that the steady-state local
estimation error covariances are

P̂ (1)
=

[
0.79 0.54
0.54 8

]
, P̂ (2)

=

[
1.54 −0.49

−0.49 11.87

]
.

We compute the optimal policy and optimal averaged reward
using the value iteration algorithm. To cope with the countable
infinity of the state space, the ideas in Sennott (2009, Chapter
8) are borrowed. The details of the algorithm are as follows. We
truncate the state space with N ∈ N, i.e., the truncated state space
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Fig. 2. Optimal action of state s = (j1, j2) with x-axis presenting j1 and y-axis
j2 . The red stars and blue circles indicate the action e1 and e2 , respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Averaged reward obtained by the MDP algorithm (denote by the symbol ♠), the
myopic policy (♣) and random policy (♥) in different cases for homogeneous
models.

Case no. ♠ ♣ ♥

1 40.98 40.82 29.94
2 71.49 71.37 55.91
3 93.75 93.46 71.45

SN ≜ {0, . . . ,N}
2. Compute the value function (defined on SN )

iteratively by

JNn (s) = max
a∈A

{r(s, a) + G(JNn−1, s, a)}, ∀s ∈ SN

with JN0 (s) = 0. Since the value iteration algorithm converges in
our case (see Zhu & Guo, 2005), then for any N , let

ϱ∗

N ≜ lim
n→∞

JNn ((0, 0)) − JNn−1((0, 0)),

qN (s) ≜ lim
n→∞

JNn (s) − JNn ((0, 0)).

One thus obtain the differential value function q(s) = limN→∞qN
(s), ∀s ∈ S. The N is chosen such that |ϱ∗

N − ϱ∗

N−1|/ϱ
∗

N−1 is smaller
than a prescribed tolerance error. In our simulation, we let N = 19
and the error is 0.01. We obtain that the optimal averaged reward
is 50.21 and the optimal policy is depicted as in Fig. 2. One may
see that the optimal policy has the threshold structure stated in
Theorem 2.

Example 2. We shall show that the myopic policy is optimal for
homogeneous models. To this end, each system is the same as the
2nd system in Example 1, and the state space is also truncated
with N = 19. In the first case, we let M = 2, N = 1; the second
case M = 3, N = 2 and the third case M = 5, N = 2. The
averaged reward obtained by the MDP algorithm and the myopic
policy are shown in Table 1. As a baseline, we also simulate a
random policy: at each time, N out of the M systems are randomly
and uniformly chosen to be attacked. One sees that the averaged
rewards obtained by the optimal MDP algorithm and the myopic
policy are quite close, which verifies the optimality of the myopic
policy. Also, compared with the random policy, the myopic policy
has a significant performance improvement.

Example 3. We do simulations for four cases with heterogeneous
models: in the first case, we let M = 2, N = 1; the second case
M = 3, N = 2, the third case M = 5, N = 2 and the fourth

Table 2
Averaged reward obtained by the MDP algorithm (denote by the symbol ♠), the
index-based policy (♦) and random policy (♥) in different cases for heterogeneous
models.

Case no. ♠ ♦ ♥

1 44.88 42.72 28.15
2 80.50 78.97 51.97
3 106.37 103.4 69.03
4 136.22 131.94 84.5

Table 3
Averaged reward obtained by the index-based policy (denote by the symbol ♦)
and random policy (♥) in different cases (with large M’s and N’s) for heterogeneous
models.

Case No. ♦ ♥

1 4446 2816
2 18971 12658
3 22269 14082
4 25733 16885

case M = 6, N = 3.7 In each case the first ⌊M/2⌋ systems are
the same as the 1-st system in Example 1, while the remaining
are the same as the 2nd system. We truncate the state space
with N = 12, which is mainly due to computation accuracy of
index oi(·) defined in (10). Specifically, since as j → ∞, vi(j)[1 −

(1 − ϵi)j]/ϵi → v′

i (j)[1 − (1 − ϵi)j+1
]/ϵi, then when j is large

enough (N = 13 for 1st system and N = 17 for 2nd system),
numerical computing software (Matlab in our simulation) cannot
provide accurate value of oi(·). The averaged reward obtained by
the MDP algorithm, the index-based policy and the random policy
(the same as in the second example) are shown in Table 2, from
which one sees that the index-based policy approximates theMDP
algorithm surprisinglywell even in these non-asymptotic cases. As
in Example 2, the index-based policy has a significant performance
gain over the random policy. To better illustrate this performance
gain, we further simulate the index-based policy and the random
policy for some large M’s and N’s (we do not simulate the MDP
algorithm due to capacity limitation). The results are shown in
Table 3.

5. Conclusion

In this paper, attack allocation on remote state estimation in
multi-systems was considered. The problemwas solved by formu-
lating it as an MDP problem, of which an optimal deterministic
and stationary policy exists. Threshold structure of the optimal
policy was proved, by which both online implementation and off-
line computation overhead can be reduced. To overcome the curse
of dimensionality, an asymptotically optimal index-based policy,
which is quite easy to compute and implement, was provided. The
results were verified by numerical simulations. In particular, our
numerical examples illustrated that the index-based policy works
well even when the number of systems is small. An interesting
direction of future works is to investigate the problem in a game-
theoretic way, where the sensors (which have limited communi-
cation energy) are aware of the presence of the attacker.

Appendix A. Proof of Theorem 1

We first show that our MDP model has some ‘‘nice’’ properties,
by which Theorem 1 can be proved. To this end, we define a

7 We do not simulate asymptotic cases (i.e., M and N are sufficiently large) since
state space size increases exponentially with respect to M, the memory required
would be beyond our capabilities.
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functionW : S ↦→ [1, ∞) as

W (s = (j1, j2))

=

{
2, if j1 = 0, j2 = 0,
W1(j1) + W2(j2), otherwise, (A.1)

withW1,W2 : N ↦→ [1, ∞) as

W1(j) =

{
φλ

j
1, if j ≤ N1,

φλ
N1
1 |A1|

2(j−N1), if j > N1,

W2(j) =

{
φλ

j
2, if j ≤ N2,

φλ
N2
2 |A2|

2(j−N2), if j > N2,

where φ, λi,Ni are parameters satisfying the following: for each
i = 1, 2,

λi >1,

(1 − ϵi)(λi − 1) ≤
1
2
ϵ1ϵ2, (A.2)

φ[β − (1 −
1
2
ϵ1ϵ2)] ≥1, (A.3)

φλ
Ni
i [β − (1 − ϵi)|Ai|

2
] ≥φ + 1, (A.4)

with a constant β < 1, which is bounded below by

β > max
(
1 −

1
2
ϵ1ϵ2, (1 − ϵi)|Ai|

2
)

, i = 1, 2. (A.5)

Onemay see that since φ > 1, λi > 1,Wi togetherwithW arewell
defined (i.e., they are all greater than 1).

About W , we have the following two lemmas. Before proceed-
ing, we need the following definition.

Definition 1. Given a function W : S ↦→ [1, ∞), for a function
u : S ↦→ R, define itsW -norm as

∥u∥W = sup
s∈S

|u(s)|/W (s).

LetBW (S) be the normed linear space ofmeasurable functions u on
Swith ∥u∥W < ∞.

Lemma1. For any f ∈ F, the transition kernelP(·|·, f (·)) isuniformly
W−geometrically ergodic,8 i.e., for any f ∈ F and any measurable
function u ∈ BW (S), there exists a probability measureµf (depending
on f ) and constants L and δ < 1, which are independent of f , such that
for any s ∈ S, k ∈ N,⏐⏐⏐⏐G(u, s, f (s)) −

∫
udµf

⏐⏐⏐⏐ ≤ ∥u∥WW (s)Lδk. (A.6)

Proof. Weprove that for each f ∈ F, there exist constant 0 < ϖ <

1 and b, which are independent of f , such that

P ((0, 0)|(0, 0), f ((0, 0))) ≥ ϖ (A.7)

and for any s ∈ S

G(W , s, f (s)) ≤ βW (s) + b1{(0,0)}(s) (A.8)

whereW (·) and β are defined in (A.1) and (A.5), respectively. Then
by Meyn and Tweedie (1994, Theorem2.1 and2.2), for each f , L and
δ in (A.6) can be chosen in termsofϖ, β, b (which are independent
of f ). The uniform ergodicity in Lemma 1 thus can be established.

8 Interested readers are referred to Meyn and Tweedie (1993) to see a more
elegant definition, which, however, requires more background knowledge, and is
thus omitted here.

Eq. (A.7) is trivial. To show (A.8), notice that when s = (0, 0),
one may choose a sufficiently large b such that (A.8) is satisfied.
Let s ≜ (j1, j2) ̸= (0, 0), suppose the action is e1, then

G(W , s, f (s))
=(1 − ϵ1)W1(j1 + 1) + (1 − ϵ2)W2(j2 + 1)

+ ϵ1(1 − ϵ2)φ + (1 − ϵ1)ϵ2φ + 2ϵ1ϵ2
≤(1 − ϵ1)W1(j1 + 1) + ϵ1(1 − ϵ2)φ + 1 (A.9)

+ (1 − ϵ2)W2(j2 + 1) + (1 − ϵ1)ϵ2φ + 1. (A.10)

Denote the term in (A.9) and (A.10) byΛ1 andΛ2, respectively.We
show Λ1 ≤ βW1(j1) by examining cases.

Case j1 < N1:

Λ1 =(1 − ϵ1)λ1W1(j1) + ϵ1(1 − ϵ2)φ + 1
≤(1 − ϵ1)λ1W1(j1) + ϵ1(1 − ϵ2)W1(j1) + 1

≤(1 −
1
2
ϵ1ϵ2)W1(j1) + 1

≤βW1(j1),

where the second inequality follows from (A.2) and the last
one (A.3).

Case j1 ≥ N1:

Λ1 =(1 − ϵ1)|A1|
2W1(j1) + ϵ1(1 − ϵ2)φ + 1

≤βW1(j1),

where the inequality follows from (A.4). Using similar arguments,
one may prove Λ2 ≤ βW2(j2), which completes the case when
action e1 is used. When e2 or 0, similar results can be proved in the
same way. The proof is thus complete. □

Lemma 2. There exists a constant α such thatr̄(s)W ≤ α,

with r̄(s) ≜ supa∈Ar(s, a).

Proof. Let W ′

i (j) = |Ai|
2j, j ∈ N, i = 1, 2. Since W (s) ≥ 1, ∀s,

we only need to check the asymptotic case of r̄(s)/W (s). Since for
i = 1, 2,

lim
j→∞

Wi(j)
W ′

i (j)
= φλ

Ni
i |Ai|

−2Ni

is a constant, it suffices to prove for i = 1, 2,

lim sup
j→∞

Tr(hj
i(P̂

(i)))
W ′

i (j)
< ∞. (A.11)

Since the arguments are exactly the same, we do not distinguish
i = 1 and i = 2 and suppress subscript i in the remainder of this
proof. Let ϕ be a constant such that P̂ ⪯ ϕI and Q ⪯ ϕI . Define a
function

g(X) = AXA⊤
+ ϕI.

One then obtains that

hj(P̂) ⪯ g j(ϕI) ⪯ ϕ

j∑
k=0

Ak(A⊤)k,

which yields that Tr(hj(P̂))/|A|
2j is bounded. Eq. (A.11) thus follows

and the proof is complete. □

We are ready to prove Theorem 1 using the results in Guo
and Zhu (2006).9 Since our state space is denumerable, by Remark

9 Notice that the distinguished feature of our MDP model is that the one-stage
reward function is unbounded above, while the conventionalMDPmodels (including
the model in Leong et al. (2015)) have the reward (cost) function being bounded
above (below).
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4.1(b) thereof, to prove Theorem1, it suffices to verify Assumptions
3.1, 3.210 and 3.3 thereof. Since our action space is finite, Assump-
tion 3.2 holds trivially. Assumption 3.1 and 3.3 follows directly
from Lemmas 1 and 2 (see Remark 3.3(b) thereof). The proof thus
is complete.

Appendix B. Proof of Theorem 2

To present the structure of the optimal action, we give the
following supporting lemma about the structure of so-called dif-
ferential value function q(s) in (8). To this end, we define a partial
order on S. Let s = (j1, j2), s′ = (j′1, j

′

2) ∈ S, we say that s ≼ s′

if j1 ≤ j′1 and j2 ≤ j′2. This partially ordered set is a lattice. Let
s ↑ (↓)s′ denote the join (meet) on (≼, S).

Lemma 3. Let s, s′ ∈ S, for function q(·), the followings hold:

Monotonicity: If s ≼ s′, q(s) ≤ q(s′).
Submodularity: q(s) + q(s′) ≥ q(s ↓ s′) + q(s ↑ s′).

Proof. Let 0 < α < 1. Define the discounted reward associated
with the initial state s1 = s and policy θ by

Jα(s, θ ) = lim inf
T→∞

Eθ
s

[
T∑

k=1

αkr(sk, ak)

]
,

and J∗
α (s) ≜ supθ∈Θ Jα(s, θ ). With the existence of stationary and

deterministic optimal policy proved in Theorem 1, one may let

q(s) = lim
α→1

Vα(s).

with Vα(s) = J∗
α (s) − J∗

α ((0, 0)).
Then we show the monotonicity and submodularity of q(s) by

examining Va(s). We do this by value iteration. To this end, we
define a dynamic programming operator Tα: given a measurable
function u : S ↦→ R, let

Tαu(s) ≜ max
a∈A

[r(s, a) + αG(u, s, a)] , s ∈ S.

Given 0 < α < 1, we define a functionW ′
α : S ↦→ [1, ∞) (depend-

ing on α) that has exactly the same form as W (s) in (A.1) but the
parameters involved have a different constraint. Specifically, Eqs.
(A.2)–(A.4) are replaced with

(1 − ϵi)(λi − 1) <
1
α

− 1,

1 ≤ φ <
1
α

,

φλ
Ni
i [1 − (1 − ϵi)|Ai|

2
] ≥φ + 1.

Using the same arguments as for Lemma 2, it is easy to see thatsupa∈Ar(s, a)

W ′

α
< ∞. Thus, for any 0 < α < 1, ∥J∗

α (s)∥W ′
α

<

∞. Furthermore, by some basic calculations, one obtains that W ′
α

satisfies (Hernández-Lerma & Lasserre, 1999, Assumption 8.3.2).
It then follows from Proposition 8.3.9 thereof, Tα is a contraction
operator on BW ′

α
(S). By Banach’s Fixed Point Theorem, for any u ∈

BW ′
α
(S), 0 < a < 1,

lim
n→∞

T n
αu = J∗

α (s). (B.1)

10 Notice that in Guo and Zhu (2006), the goal is to minimize an average cost,
while we aims to maximize a reward function. Assumption 3.2 thereof should be
adjusted accordingly, i.e., the requirement that the one-stage cost function is lower
semicontinuous should be replaced with that the one-stage reward function is
upper semicontinuous.

Since given α, J∗
α ((0, 0)) is a constant, the structure (monotonicity

or submodularity) of Vα(s) can be proved by showing that J∗
α (s) has

the same structure. By (B.1), it suffices to prove that the structure
is preserved by the dynamic operator Tα .

Monotonicity: Suppose s ≼ s′ and u(s) ≤ u(s′), since for any f ,
r(s, f (s)) ≤ r(s′, f (s′)), it holds that

r(s, f (s)) + αG(u, s, f (s)) ≤ r(s′, f (s′)) + αG(u, s′, f (s′))

for any f , which yields Tαu(s) ≤ Tαu(s′).
Submodularity: By themonotonicity of q(s), without any perfor-

mance loss one may eliminate action 0. In the remainder, we let
the action space A = {e1, e2}. Suppose u ∈ BW ′

α
(S) is monotonic,

and for any s, s′ ∈ S

u(s) + u(s′) ≥ u(s ↓ s′) + u(s ↑ s′), (B.2)

we need to prove Tαu(s) + Tαu(s′) ≥ Tαu(s ↓ s′) + Tαu(s ↑ s′).
By the definition of one stage reward function r(s, a), it suffices to
prove

max
a∈A

G(u, s, a) + max
a∈A

G(u, s′, a)

≥max
a∈A

G(u, s ↓ s′, a) + max
a∈A

G(u, s ↑ s′, a). (B.3)

Let s = (j1, j2), s′ = (j′1, j
′

2) with j1 ≤ j′1, j2 ≥ j′2. Without loss of
any generality, we assume (1 − ϵ1)(1 − ϵ2) ≥ (1 − ϵ1)(1 − ϵ2). For
the function u, define the optimal action associated with state s by

a∗(s) ≜ argmax
a∈A

G(u, s, a).

In the following, we prove (B.3) by cases.
Case a∗(s ↓ s′) = a∗(s ↑ s′): Without loss of generality, we let

a∗(s ↓ s′) = a∗(s ↑ s′) = e1. Let ε1 = (1 − ϵ1)(1 − ϵ2), one then
obtains that

max
a∈A

G(u, s, a) + max
a∈A

G(u, s, a)

≥G(u, s, e1) + G(u, s′, e1)

=ε1

(
u((j1 + 1, j2 + 1)) + u((j′1 + 1, j′2 + 1))

)
+ (1 − ϵ1)ϵ2

(
u((j1 + 1, 0)) + u((j′1 + 1, 0))

)
+ ϵ1(1 − ϵ2)

(
u((0, j2 + 1)) + u((0, j′2 + 1))

)
+ 2ϵ1ϵ2u((0, 0))

≜ε1

(
u((j1 + 1, j2 + 1)) + u((j′1 + 1, j′2 + 1))

)
+ Λ

≥ε1

(
u((j1 + 1, j′2 + 1)) + u((j′1 + 1, j2 + 1))

)
+ Λ

=G(u, s ↓ s′, e1) + G(u, s ↑ s′, e1)

=max
a∈A

G(u, s ↓ s′, a) + max
a∈A

G(u, s ↑ s′, a),

where the second inequality follows from (B.2).
Case a∗(s ↓ s′) = e1, a∗(s ↑ s′) = e2: Let ε2 = (1 − ϵ1)(1 − ϵ2)

and ε3 = (1 − ϵ1)ϵ2 − (1 − ϵ1)ϵ2, one then obtains that

G(u, s, e2) + G(u, s′, e1) − G(u, s↓s′, e1) − G(u, s↑s′, e2)

=ε2u((j1 + 1, j2 + 1)) + ε1u((j′1 + 1, j′2 + 1))

− ε1u((j1 + 1, j′2 + 1)) − ε2u((j′1 + 1, j2 + 1))

+ ε3

(
u((j′1 + 1, 0)) − u((j1 + 1, 0))

)
≥ε1u((j1 + 1, j2 + 1)) + ε1u((j′1 + 1, j′2 + 1))
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− ε1u((j1 + 1, j′2 + 1)) − ε1u((j′1 + 1, j2 + 1))

≥0,

where the first inequality follows from the monotonicity of u and
the fact ε1 ≥ ε2, and the second inequality is due to (B.2). Eq. (B.3)
thus follows.

Case a∗(s ↓ s′) = e2, a∗(s ↑ s′) = e1: One has the following:

G(u, s, e2) + G(u, s′, e1) − G(u, s↓s′, e2) − G(u, s↑s′, e1)

=ε2u((j1 + 1, j2 + 1)) + ε1u((j′1 + 1, j′2 + 1))

− ε2u((j1 + 1, j′2 + 1)) − ε1u((j′1 + 1, j2 + 1))

+ (ε1 − ε2 + ϵ2 − ϵ2)
(
u((0, j2 + 1)) − u((0, j′2 + 1))

)
≥ε1u((j1 + 1, j2 + 1)) + ε1u((j′1 + 1, j′2 + 1))

− ε1u((j1 + 1, j′2 + 1)) − ε1u((j′1 + 1, j2 + 1))

+ (ε1 − ε2)
(
u((0, j2 + 1)) + u((j1 + 1, j′2 + 1))

− u((0, j′2 + 1)) − u((j1 + 1, j2 + 1))
)

≥0,

which yields (B.3). The proof thus is complete. □

We are ready to prove Theorem 2. First, we fix j2 and show that
if f ∗(s = (j1, j2)) = e1, then f ∗(s = (j1 + j, j2)) = e1 with j ∈ N.
Since f ∗(s = (j1, j2)) = e1 implies that

(ε1 − ε2)q((j1 + 1, j2 + 1)) + ε3q((j1 + 1, 0))
≥ε4q((0, j2 + 1)) + (ϵ1ϵ2 − ϵ1ϵ2)q((0, 0))
≜Λ3.

where ε4 = ϵ1(1 − ϵ2) − ϵ1(1 − ϵ2) Since ε1 − ε2 ≥ 0, ε3 and Λ3
is constant for a given j2, by the monotonicity of q in Lemma 3, one
obtains that

(ε1 − ε2)q((j1 + j + 1, j2)) + ε3q((j1 + j + 1, 0)) ≥ Λ3,

which yields f ∗(s = (j1 + j, j2)) = e1. Then it concludes that given
a j2, there is a critical curve l1(j2) such that

f ∗(s = (j1, j2)) =

{
e1, if j1 ≥ l1(j2),
e2, if j1 < l1(j2).

(B.4)

Similarly, we fix j1 and show that if f ∗(s = (j1, j2)) = e2, then
f ∗(s = (j1, j2 + j)) = e2 with j ∈ N. Note that f ∗(s = (j1, j2)) = e2
implies that

ε4q((0, j2 + 1)) − (ε1 − ε2)q((j1 + 1, j2 + 1))
≥ε3q((j1 + 1, 0)) + (ϵ1ϵ2 − ϵ1ϵ2)q((0, 0))
≜Λ4.

Then one has

ε4q((0, j2 + j + 1)) − (ε1 − ε2)q((j1 + 1, j2 + j + 1))

=(ε1 − ε2)
(
q((0, j2 + j + 1)) − q((j1 + 1, j2 + j + 1))

)
+ (ϵ2 − ϵ2)q((0, j2 + j + 1))

≥(ε1 − ε2)
(
q((0, j2 + 1)) − q((j1 + 1, j2 + 1))

)
+ (ϵ2 − ϵ2)q((0, j2 + 1))

=ε4q((0, j2 + 1)) − (ε1 − ε2)q((j1 + 1, j2 + 1))
≥Λ4,

where the first inequality follows from the monotonicity and sub-
modularity of q(s) established in Lemma 3. Hence f ∗(s = (j1, j2 +

j)) = e2. Similarly, it concludes that given a j1, there is a critical
curve l2(j1) such that

f ∗(s = (j1, j2)) =

{
e2, if j2 ≥ l2(j1),
e1, if j2 < l2(j1).

(B.5)

To simultaneously satisfy both (B.4) and (B.5), both functions l1(·)
and l2(·) must be monotonically non-decreasing. Then the state-
ments in Theorem 2 follow immediately by letting lc(j1, j2) =

l2(j1) − j2.

Appendix C. Proof of Theorem 3

The byproduct of Theorem 2 is that for an optimal policy at no
time the action 0 is chosen. This can be extended to a general case,
i.e., the constraint that at each time the attacker can attack at most
N of M systems is equivalent to the constraint that the attacker
attacks exactly N of M systems. With this in mind, we prove the
theorem using the results in Whittle (1988) on the restless multi-
armed bandit problem.

Recall that d∗

i (j, zi) is the optimal rule for the state τ
(i)
k−1 = jwith

j ∈ Nwhen the subsidy is zi. We then have the following definition
and lemma.

Definition 2 (Whittle, 1988). The ith system is said to be indexable
if for any j ∈ N, d∗

i (j, zi) = 0 implies d∗

i (j, z
′

i ) = 0 with z ′

i ≥ zi. The
whole system is indexable if each system is indexable.

Lemma 4. The system introduced in Section 2 is indexable.

Proof. We show that each system is indexable. For ease of nota-
tions, throughout this proof, we omit the subscript i. Denote p(·) as
the resulted equilibrium probability distribution of the state when
ℓ(z) = j∗ (function ℓ(·) is, recall, introduced in (9)11 ). Then due to
the threshold structure in (9), one obtains that

∞∑
j=0

p(j) =1, (C.1)

p(j) =

{
(1 − ϵ)p(j − 1), if 1 ≤ j ≤ j∗,
(1 − ϵ)p(j − 1), if j > j∗. (C.2)

Note that the averaged reward obtained by the attacker has two
parts: the averaged subsidy Rs and the averaged estimation error
Re:

Rs =

j∗−1∑
j=0

p(j)z,

Re =

∞∑
j=0

p(j)Tr(hj(P̂)).

Now fix the subsidy z and consider a suboptimal policy. The
policy has a similar threshold structure as in (9) but with the
switching threshold 0 ≤ j⋄ < j∗. Denote the corresponding
equilibrium probability distribution as p′, which is computed in a
similar way as (C.1) (C.2). Then one has

j∗−1∑
j=0

p(j) >

j⋄−1∑
j=0

p′(j). (C.3)

11 Notice that the subscript i has been omitted.
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Denote the averaged subsidy and averaged estimation error as R ′
s

and R ′
e, respectively. Due to the optimality of l(z) = j∗, one obtains

that Rs − R ′
s ≥ R ′

e − Re, i.e.,⎡⎣j∗−1∑
j=0

p(j) −

j⋄−1∑
j=0

p′(j)

⎤⎦ z ≥ R ′

e − Re.

Then by (C.3), for any z ′
≥ z, it holds that⎡⎣j∗−1∑

j=0

p(j) −

j⋄−1∑
j=0

p′(j)

⎤⎦ z ′
≥ R ′

e − Re,

which means that for any subsidy z ′
≥ z, the optimal rule for the

states 0 ≤ j < j∗ is still ‘‘not attack’’. The proof thus is complete. □

Asymptotic optimality of the index-based policy πd stated in
Theorem 3 follows immediately from the indexability established
in Lemma 4 and Whittle (1988, Conjecture).12
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